Git: How to Clean (and Rewrite) History

Sylvain Bouveret, Grégory Mounié, Matthieu Moy

2017

[first].[last]@imag.fr
http://recherche.noiraudes.net/resources/git/Slides/git-history-slides.

pdf

Grenoble INP

e g

http://recherche.noiraudes.net/resources/git/Slides/git-history-slides.pdf
http://recherche.noiraudes.net/resources/git/Slides/git-history-slides.pdf

Goals of the presentation

e Explaining why having a clean history is important
e Showing how to use the index

e Introducing the mechanisms that git provides to deal with
history

Git: How to Clean (and Rewrite) History

Clean History: Why?

COMMENT DATE
CREATED MAIN LOOP & TIMING CONTROL.
ENABLED CONFIG FILE PARSING
MISC BUGFIXES
CODE ADDITIONS/EDITS
MORE CODE
HERE HAVE (ODE.
APARARAA
ADKFJSLKDFISOKLFT
MY HANDS ARE TYPING LJORDS
HARARARAAANDS

AS A PROTECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

Git: How to Clean (and Rewrite) History 3/32

Git blame: Who did that?

renohle

ensimAg)) ' |

git gui blame file

Repository Edit Help

0%a0 Usav L w |-—exec-path|=<path>]| |-—html-path] Lffmanfpatnnmj“;

albe albe 12 " [-p|--paginate|--no-pager] [--no-replace-objects]||
JT Jn 13 n [-—git-dir=<path>] [--work-tree=<path>] [--namesp

62b4 62b4 14 " <command> [<args>]"

822a 822a 15

b7d9 b7d9 16 const char git_more_info_string[] =

7390 7390 17 N_("'git help -a' and 'git help -g' lists available subcomma
PO PO 18 "concept guides. See 'git help <command>' or 'git help <co

| | 19 "to read about a specific subcommand or concept.");

b d9 h7d9 o] =

1 f412a1d5c48 7e fl

/Author: Phlllp Oakley <philipoakley@iee.org> Wed Apr 3 00:39:48 2013
Committer: Junio C Hamano <gitster@pobox.com> Wed Apr 3 03:11:08 2013

help: mention -a and -g option, and 'git help <concept>' usage.

Reword the overall help given at the end of "git help -a/-g" to
mention how to get help on individual commands and concepts.

Signed-off-by: Philip Oakley <philipoakley@iee.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>

How to Clean (and Rewrite) History

Grenoble

Bisect: Find regressions srogts ;*,\,

$ git bisect start

$ git bisect bad

$ git bisect good v1.9.0

Bisecting: 607 revisions left to test after this (roughly 9 steps)
[8fe3eeb67adcd2ee9372c7044fa311ce55eb285b4] Merge branch ’jx/il8n’

$ git bisect good

Bisecting: 299 revisions left to test after this (roughly 8 steps)
[aa4bffa23599e0c2e611be7012ecb5£596e£88b5] Merge branch ’jc/codl...]
$ git bisect good

Bisecting: 150 revisions left to test after this (roughly 7 steps)
[96b29bde9194£96cb711a00876700ea8dd9c0727] Merge branch ’sh/enal...]
$ git bisect bad

Bisecting: 72 revisions left to test after this (roughly 6 steps)
[09e13ad5b0£0689418a723289dca7b3c72d538c4] Merge branch ’as/prel...]

$ git bisect good
60ed26438c909fd273528e67 is the first bad commit

commit 60ed26438c909£d273528e67b399eebcad028ele
Git: How to Clean (and Rewrite) History 5/32

Grenoble

Bisect: Binary searc srepne ﬁ\,

git bisect visualize

Merge branch 'sh/enable-preloadindex’
environment.c: enable core.preloadindex by default
Merge branch 'rs/read-ref-at'
refs.c: change read_ref at to use the reflog iterators
Merge branch 'jk/error-resolve-conflict-advice'
error_resolve_conflict: drop quotations around operation
error_resolve_conflict: rewrap advice message
Git 1.8.5.5
Merge branch 'rs/pack-objects-no-unnecessary-realloc'
pack-objects: use free()+xcalloc() instead of xrealloc()+memset()
Sync with 1.9.4
Merge branch 'lt/log-auto-decorate’
git log: support "auto" decorations
Git 2.0

N

Vi
Merge branch 'jm/doc-wording-tweaks'
Documentation: wording fixes in the user manual and glossary
Merge branch 'jm/format-patch-mail-sig'
format-patch: add "--signature-file=<file>" option
format-patch: make newline after signature conditional
Git 2.0-rc4
Merge branch 'jk/http-errors'
http: default text charset to iso-8859-1
remote-curl: reencode http error messages
strbuf: add strbuf_reencode helper

nd Rewrite) History

Grenoble

Bisect: Binary searc srepne ﬁ\,

git bisect visualize

Merge branch 'jk/http-errors'

http: default text charset to iso-8859-1

remote-curl: reencode http error messages

strbuf: add strbuf_reencode helper

http: optionally extract charset parameter from content-type
http: extract type/subtype portion of content-type

t5550: test display of remote http error messages

t/lib-httpd: use write_script to copy CGl scripts

test-lib: preserve GIT_CURL_VERBOSE from the environment
Update draft release notes to 2.0

O
@_ Merge branch 'ow/config-mailmap-pathname'
config: respect '~' and '~user' in mailmap file
O Git 1.9.3

Merge branch 'fc/remote-helper-refmap’
transport-helper: remove unnecessary strbuf resets
’ transport-helper: add support to delete branches
: fast-export: add support to delete refs
fast-import: add support to delete refs
$ transport-helper: add support to push symbolic refs
b4

transport-helper: add support for old:new refspec
fast-export: add new --refspec option
fast-export: improve argument parsing
v2.0.0-rc0] Git 2.0-rc0
C—{bisect/good-1a81f6ceea7795e2b78cebd356d276afe79e7626 | Merge branch 'nd/daemonize-gc'

nd Rewrite) History

Grenoble I

Bisect: Binary searc srepne ;3,\,

git bisect visualize

bisect/bad | Merge branch 'fc/remote-helper-refmap'
P transport-helper: remove unnecessary strbuf resets
P transport-helper: add support to delete branches
p fast-export: add support to delete refs
p fast-import: add support to delete refs
transport-helper: add support to push symbolic refs
@ transport-helper: add support for old:new refspec
0 fast-export: add new --refspec option

fast-export: improve argument parsing

>—< v2.0.0-rc0| Git 2.0-rcO

bisect/good-1a81f6ceea7795e2b78cebd356d276afe79e7626 | Merge branch 'nd/daemonize-gc'

nd Rewrite) Histor

Bisect: Binary search)

git bisect visualize

Merge branch 'fc/remote-helper-refmap'

transport-helper: remove unnecessary strbuf resets

transport-helper: add support to delete branches

() fast-export: add support to delete refs

fast-import: add support to delete refs
(O—]bisect/good-9193f742350d1b97e32b0687d1577dc2b2a0d713 | transport-helper: add support t
O—{bisect/good-1a81f6ceea7795e2b78cebd356d276afe79e7626 | Merge branch 'nd/daemonize-gc'

How to Clean (and Rewrite) Histor

Bisect: Binary search)

git bisect visualize

bisect/bad | fast-export: add support to delete refs
(O fast-import: add support to delete refs
O—{bisect/good-9193f742350d1097e32b0687d1577dc2b2a0d713 | transport-helper: add support to p

How to Clean (and Rewrite) History

Grenoble

EnsimAg ;" \ ,

git blame and git bisect point you to a commit, then ...

e Dream:

e Commit is a 50-lines long patch
e Commit message explains the intent of the programmer

e Nightmare 1:

e Commit mixes a large reindentation, a bugfix and a real feature
e Message says “| reindented, fixed a bug and added a feature”

e Nightmare 2:

e Commit is a trivial fix for the previous commit
e Message says “Oops, previous commit was stupid”

e Nightmare 3:
e Bisect not even applicable because most commits aren't

compilable.

Git: How to Clean (and Rewrite) History 7/ 32

\ 1y
Then What? z;‘es:,:‘:;j;r,\,

Which one do you prefer?

Git: How to Clean (and Rewrite) History

Then what?

Clean history is important for software
maintainability

Git: How to Clean (and Rewrite) History

Then what?

Clean history is as important as comments for
software maintainability

Git: How to Clean (and Rewrite) History

Two Approaches To Deal With History

Approach 1

“Mistakes are part of history.”

Approach 2

“History is a set of lies agreed upon.”!

!Napoleon Bonaparte

Git: How to Clean (and Rewrite) History

Approach 1: Mistakes are part of history

~ the only option with Subversion/CVS/...

History reflects the chronological order of events

e Pros:
e Easy: just work and commit from time to time
e Traceability

e But ...

e |s the actual order of event what you want to remember?

e When you write a draft of a document, and then a final
version, does the final version reflect the mistakes you did in
the draft?

Git: How to Clean (and Rewrite) History 10 / 32

Approach 2: History is a set of lies agreed upon

e Popular approach with modern VCS (Git, Mercurial. . .)

e History tries to show the best logical path from one point to
another

e Pros:

e See above: blame, bisect, ...
e Code review
e Claim that you are a better programmer than you really are!

Git: How to Clean (and Rewrite) History 11 / 32

Another View About Version Control

e 2 roles of version control:

e For beginners: help the code reach upstream.

e For advanced users: prevent bad code from reaching upstream.
e Several opportunities to reject bad code:

e Before/during commit
e Before push
e Before merge

Git: How to Clean (and Rewrite) History

What is a clean history

e Each commit introduce small group of related changes (=~ 100
lines changed max, no minimum!)

e Each commit is compilable and passes all tests (“bisectable
history™)

e “Good” commit messages

Git: How to Clean (and Rewrite) History

Writing good commit messages

\ 1y

Grenoble IIIP\

Reminder: good comments e |

e Bad:

int i; // Declare i of type int
for (i = 0; i < 10; i++) { ... }
£(i)

e Possibly good:

1 int i; // We need to declare % outside the for
2 // loop because we’ll use it after.

3 for (i = 0; i < 10; i++) { ... }

4 £(i)

Git: How to Clean (and Rewrite) History

Reminder: good comments

e Bad: What? The code already tells

int i; // Declare i of type int
for (i = 0; i < 10; i++) { ... }
£(i)

e Possibly good: Why? Usually the relevant question

1 int i; // We need to declare % outside the for
2 // loop because we’ll use it after.

3 for (i = 0; i < 10; i++) { ... }

4 £(i)

Git: How to Clean (and Rewrite) History 14 / 32

Reminder: good comments

e Bad: What? The code already tells

int i; // Declare i of type int
for (i = 0; i < 10; i++) { ... }
£(i)

e Possibly good: Why? Usually the relevant question

1 int i; // We need to declare % outside the for
2 // loop because we’ll use it after.

3 for (i = 0; i < 10; i++) { ... }

4 £(i)

Common rule: if your code isn't clear enough,
rewrite it to make it clearer
instead of adding comments.

Git: How to Clean (and Rewrite) History

Good commit messages

e Recommended format:

One-line description (< 50 characters)

Explain here why your change is good.
e Write your commit messages like an email: subject and body

e Imagine your commit message is an email sent to the
maintainer, trying to convince him to merge your code®

e Don't use git commit -m

2Not just imagination, see git send-email
Git: How to Clean (and Rewrite) History 15 / 32

Grenoble

1
Good commit messages: examples ensimag)l\,

https://github.com/git/git/commit/b1b49ff8d42a21ade6a72b40al47fd3eaff3dbs8d

daemon: plug memory leak

Call child_process_clear() when a child ends to release the memory
allocated for its environment. This is necessary because unlike all
other users of start_command() we don’t call finish_command(), which
would have taken care of that for us.

This leak was introduced by f063d38 (daemon: use cld->env_array
when re-spawning).

Signed-off-by: Rene Scharfe <l.s.rQweb.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>

Git: How to Clean (and Rewrite) History 16 / 32

https://github.com/git/git/commit/b1b49ff8d42a21ade6a72b40a147fd3eaff3db8d

Grenoble

1
Good commit messages: counter-example ensimag)l\,

http://git.savannah.gnu.org/cgit/emacs.git/commit/?id=19e09cfab61436cb4590303871a31ee07624f5ab

Ensure redisplay after evaluation

* lisp/progmodes/elisp-mode.el (elisp-eval-last-sexp): Revert
last change.

* lisp/frame.el (redisplay-variables): Populate the
redisplay-variables list.

* src/xdisp.c (maybe_set_redisplay): New function.

(syms_of_xdisp) <redisplay-variables>: New variable.

* src/window.h (maybe_set_redisplay): Declare prototype.

* src/data.c (set_internal): Call maybe_set_redisplay. (Bug#21835)

Not much the patch didn't already say ... (do you understand the
problem the commit is trying to solve?)

Git: How to Clean (and Rewrite) History 17 / 32

http://git.savannah.gnu.org/cgit/emacs.git/commit/?id=19e09cfab61436cb4590303871a31ee07624f5ab

Partial commits, the index

Git Data Transport Commands

http:/fosteele.com

commit -a >

ot

local
repository

O

add (-u)

remote

workspace repository

pull or rebase

checkout HEAD

H

EAA

diff HEAD

compare

Git: How to Clean (and Rewrite) History 18 / 32

The index, or “Staging Area”

“the index"” is where the next commit is prepared

Contains the list of files and their content

e git commit transforms the index into a commit

e git commit -a stages all changes in the worktree in the
index before committing. You'll find it sloppy soon.

Git: How to Clean (and Rewrite) History 19 / 32

Dealing with the index

e Commit only 2 files:

git add filel.txt
git add file2.txt
git commit

e Commit only some patch hunks:
git add -p
(answer yes or no for each hunk)

git commit

Git: How to Clean (and Rewrite) History

renobl

git add -p: example ;mﬁﬁh

$ git add -p
@@ -1,7 +1,7 @@
int main()

- int i;

1 int i = 0;
printf ("Hello, ");
it

bl

Stage this hunk [y,n,q,a,d,/,K,g,e,?17 y

Git: How to Clean (and Rewrite) History

renobl

git add -p: example ;mﬁﬁh

$ git add -p
@@ -1,7 +1,7 @@
int main()

- int i;

1 int i = 0;
printf ("Hello, ");
it

Stage this hunk [y,n,q,a,d,/,K,g,e,?17 y
@@ -5,6 +5,6 @@

- printf("i is %s\n", 1);
+ printf("i is %d\n", i);

Stage this hunk [y,n,q,a,d,/,K,g,e,?]1? n

Git: How to Clean (and Rewrite) History

renobl

git add -p: example ;mﬁﬁh

$ git add -p
@@ -1,7 +1,7 @@
int main()

o int i;

+ int i = 0;
printf ("Hello, ");
i++;

Stage this hunk [y,n,q,a,d,/,K,g,e,?17 y
@@ -5,6 +5,6 @@

- printf("i is %s\n", 1);
+ printf("i is %d\n", i);

Stage this hunk [y,n,q,a,d,/,K,g,e,?]1? n
$ git commit -m "Initialize i properly"
[master c4ba68b] Initialize i properly

1 file changed, 1 insertion(+), 1 deletion(-)

Git: How to Clean (and Rewrite) History 21 /32

git add -p: dangers

e Commits created with git add -p do not correspond to

what you have on disk

e You probably never tested this commit ...

e Solutions:
e git stash -k: stash what’s not in the index
e git rebase --exec: see later
e (and code review)

Git: How to Clean (and Rewrite) History

Clean local history

renoble |

SET]][S

1
P
|

I

)

Implement git clone -c var=value : 9 preparation patches, 1
real (trivial) patch at the end!

https://github.com/git/git/commits/
84054£79de35015£c92£73ec4780102dd820e452

Did the author actually write this in this order?

Git: How to Clean (and Rewrite) History 23 /32

https://github.com/git/git/commits/84054f79de35015fc92f73ec4780102dd820e452
https://github.com/git/git/commits/84054f79de35015fc92f73ec4780102dd820e452

renobl

Merging With Upstream srepne ;:l\,

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 1: merge (default with git pull)
@

Git: How to Clean (and Rewrite) History

renobl

Merging With Upstream srepne ;:l\,

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 1: merge (default with git pull)
() @

Git: How to Clean (and Rewrite) History

renobl

Merging With Upstream srepne ;:l\,

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 1: merge (default with git pull)
()

)
\‘

Git: How to Clean (and Rewrite) History

renobl

Merging With Upstream srepne ;:l\,

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 1: merge (default with git pull)

@ e @
\‘

Git: How to Clean (and Rewrite) History

renobl

Merging With Upstream srepne ;:l\,

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 1: merge (default with git pull)
()

.\ A .wergel
(@)

—

Git: How to Clean (and Rewrite) History

renobl

Merging With Upstream srepne ;:l\,

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 1: merge (default with git pull)
())

(©) (O] @
A Mergel
\.4‘—\.

Git: How to Clean (and Rewrite) History

renobl

Merging With Upstream srepne ;:l\,

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 1: merge (default with git pull)

@ .\A .wergel‘ B ® C
(@) Q@ Q@ Q@

Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 1: merge (default with git pull)

Merge2
® .\ A .wergel ® B ® C ,/.
(©) (©) (©) @

Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 1: merge (default with git pull)

Merge2
® .\ A .wergel ® B ® C ,/.
(©) (©) (©) @

e Drawbacks:

e Mergel is not relevant, distracts reviewers (unlike Merge2).

Git: How to Clean (and Rewrite) History 24 / 32

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 2: no merge

Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 2: no merge

Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 2: no merge

(©) (O]
'\é

Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 2: no merge

(©) (O] @ @ @
\‘

Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 2: no merge

A B C
™6 °)

Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 2: no merge
Merge2

o o o o o o
™6 o o

e Drawbacks:
e In case of conflict, they have to be resolved by the developer
merging into upstream (possibly after code review)
e Not always applicable (e.g. "I need this new upstream feature

to continue working")

Git: How to Clean (and Rewrite) History 25 / 32

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 3: rebase (git rebase or git pull --rebase)
o —a=

Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 3: rebase (git rebase or git pull --rebase)
e

@ — Gt

Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 3: rebase (git rebase or git pull --rebase)
e

@ — e
A
®—

Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 3: rebase (git rebase or git pull --rebase)

(0] .\A @ —(master]
@t

Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 3: rebase (git rebase or git pull --rebase)

® ® o=
SN De—a=

Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 3: rebase (git rebase or git pull --rebase)

(0] @) () Q@ Q@ —(master]
NA NA
® ®— @

Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 3: rebase (git rebase or git pull --rebase)

® T @t
® ®
\B
o
@]

Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 3: rebase (git rebase or git pull --rebase)

o o\‘ o\‘ ® N
\C \C'
® — &

Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 3: rebase (git rebase or git pull --rebase)

) T o © — G
®) o,
e e
NS ™~
) @ —wre]

Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 3: rebase (git rebase or git pull --rebase)

Merge2
) ® e e o @ — e
@
B
.\
-G

Git: How to Clean (and Rewrite) History

renobl

Merging With Upstream ersinng ;gl\,

Question: upstream (where my code should eventually end up) has
new code, how do | get it in my repo?

e Approach 3: rebase (git rebase or git pull --rebase)

(@) .\‘ .\‘ Q@ .\3 @ —master]
e e
NS N
® o—a=

e Drawbacks: rewriting history implies:
e A', A", B, C' probably haven't been tested (never existed on
disk)
e What if someone branched from A, A’, B or C?
e Basic rule: don't rewrite published history

Git: How to Clean (and Rewrite) History 26 / 32

ing history with rebase -i

e git rebase: take all your commits, and re-apply them onto
upstream

e git rebase -i: show all your commits, and asks you what
to do when applying them onto upstream.

Git: How to Clean (and Rewrite) History

Rewriting history with rebase -i

pick cabed7a Start feature A

pick e345d54 Bugfix found when implementing A

pick c03fffc Continue feature A

pick 5bdb132 Oops, previous commit was totally buggy

Rebase 9f58864..5bdb132 onto 9f58864

Commands :

P, pick = use commit

r, reword = use commit, but edit the commit message

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

f, fixup = like "squash", but discard this commit’s log message

x, exec = run command (the rest of the line) using shell

These lines can be re-ordered; they are executed from top to bottom.

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.
Note that empty commits are commented out

How to Clean (and Rewrite) History

Grenoble
EnsimAg

i

git rebase -i commands (1/2)

p, pick use commit (by default)

r, reword use commit, but edit the commit message

Fix a typo in a commit message

e, edit use commit, but stop for amending
~» Once stopped, use git add -p, git commit
—amend,...

s, squash use commit, but meld into previous commit

f, fixup like "squash", but discard this commit’s log message
~> Very useful when polishing a set of commits
(before or after review): make a bunch of short fixup
patches, and squash them into the real commits. No
one will know you did this mistake ;-).

Git: How to Clean (and Rewrite) History 29 / 32

git rebase -i commands (2/2)

x, exec run command (the rest of the line) using shell
e Example: exec make check. Run tests for this

commit, stop if test fail.
e Use git rebase -i --exec ’make check’3
to run make check for each rebased commit.

3Implemented by Ensimag students!

Git: How to Clean (and Rewrite) History 30 /32

Repairing mistakes: the reflog

Git’s reference journal: the reflog

e Remember the history of local refs.

e £ ancestry relation.

Merge2

® o —0.——o o @ — s
® ® ®
g NE
o, o
® ©-— e

Git: How to Clean (and Rewrite) History

Git’s reference journal: the reflog

e Remember the history of local refs.

e £ ancestry relation.

Merge2

e @ —Cmster]
—‘ < topic

Git: How to Clean (and Rewrite) History

Git’s reference journal: the reflog

e Remember the history of local refs.

e £ ancestry relation.

Merge2

@]

Git: How to Clean (and Rewrite) History

Git’s reference journal: the reflog

e Remember the history of local refs.

e £ ancestry relation.

Merge2
e N i @]
\ .
\

< topic

o ref@{n}: where ref was before the n last ref update.
e ref~n: the n-th generation ancestor of ref
e ref~: first parent of ref

e git help revisions for more

Git: How to Clean (and Rewrite) History 31/32

More Documentation

More Documentation

e http://ensiwiki.ensimag.fr/index.php/Maintenir_
un_historique_propre_avec_Git
e http://ensiwiki.ensimag.fr/index.php/Ecrire_de_

bons_messages_de_commit_avec_Git

Git: How to Clean (and Rewrite) History

http://ensiwiki.ensimag.fr/index.php/Maintenir_un_historique_propre_avec_Git
http://ensiwiki.ensimag.fr/index.php/Maintenir_un_historique_propre_avec_Git
http://ensiwiki.ensimag.fr/index.php/Ecrire_de_bons_messages_de_commit_avec_Git
http://ensiwiki.ensimag.fr/index.php/Ecrire_de_bons_messages_de_commit_avec_Git

	Clean History: Why?
	Writing good commit messages
	Partial commits, the index
	Clean local history
	Avoiding merge commits: rebase Vs merge
	Rewriting history with rebase -i

	Repairing mistakes: the reflog
	More Documentation

