
Git: How to Clean (and Rewrite) History

Sylvain Bouveret, Grégory Mounié, Matthieu Moy
2017
[first].[last]@imag.fr

http://recherche.noiraudes.net/resources/git/Slides/git-history-slides.

pdf

http://recherche.noiraudes.net/resources/git/Slides/git-history-slides.pdf
http://recherche.noiraudes.net/resources/git/Slides/git-history-slides.pdf

Goals of the presentation

• Explaining why having a clean history is important
• Showing how to use the index
• Introducing the mechanisms that git provides to deal with
history

2 / 32Git: How to Clean (and Rewrite) History

Clean History: Why?

3 / 32Git: How to Clean (and Rewrite) History

Git blame: Who did that?

git gui blame file

4 / 32Git: How to Clean (and Rewrite) History

Bisect: Find regressions

$ git bisect start

$ git bisect bad

$ git bisect good v1.9.0

Bisecting: 607 revisions left to test after this (roughly 9 steps)
[8fe3ee67adcd2ee9372c7044fa311ce55eb285b4] Merge branch ’jx/i18n’
$ git bisect good

Bisecting: 299 revisions left to test after this (roughly 8 steps)
[aa4bffa23599e0c2e611be7012ecb5f596ef88b5] Merge branch ’jc/cod[...]
$ git bisect good

Bisecting: 150 revisions left to test after this (roughly 7 steps)
[96b29bde9194f96cb711a00876700ea8dd9c0727] Merge branch ’sh/ena[...]
$ git bisect bad

Bisecting: 72 revisions left to test after this (roughly 6 steps)
[09e13ad5b0f0689418a723289dca7b3c72d538c4] Merge branch ’as/pre[...]
...
$ git bisect good

60ed26438c909fd273528e67 is the first bad commit

commit 60ed26438c909fd273528e67b399ee6ca4028e1e
5 / 32Git: How to Clean (and Rewrite) History

Bisect: Binary search

git bisect visualize

6 / 32Git: How to Clean (and Rewrite) History

Bisect: Binary search

git bisect visualize

6 / 32Git: How to Clean (and Rewrite) History

Bisect: Binary search

git bisect visualize

6 / 32Git: How to Clean (and Rewrite) History

Bisect: Binary search

git bisect visualize

6 / 32Git: How to Clean (and Rewrite) History

Bisect: Binary search

git bisect visualize

6 / 32Git: How to Clean (and Rewrite) History

Then what?

git blame and git bisect point you to a commit, then ...

• Dream:
• Commit is a 50-lines long patch
• Commit message explains the intent of the programmer

• Nightmare 1:
• Commit mixes a large reindentation, a bugfix and a real feature
• Message says “I reindented, fixed a bug and added a feature”

• Nightmare 2:
• Commit is a trivial fix for the previous commit
• Message says “Oops, previous commit was stupid”

• Nightmare 3:
• Bisect not even applicable because most commits aren’t

compilable.

7 / 32Git: How to Clean (and Rewrite) History

Then what?

Which one do you prefer?

Clean history is important for software
maintainability

8 / 32Git: How to Clean (and Rewrite) History

Then what?

Clean history is important for software
maintainability

8 / 32Git: How to Clean (and Rewrite) History

Then what?

Clean history is as important as comments for
software maintainability

8 / 32Git: How to Clean (and Rewrite) History

Two Approaches To Deal With History

Approach 1

“Mistakes are part of history.”

Approach 2

“History is a set of lies agreed upon.”1

1Napoleon Bonaparte
9 / 32Git: How to Clean (and Rewrite) History

Approach 1: Mistakes are part of history

• ≈ the only option with Subversion/CVS/...
• History reflects the chronological order of events
• Pros:

• Easy: just work and commit from time to time
• Traceability

• But ...
• Is the actual order of event what you want to remember?
• When you write a draft of a document, and then a final

version, does the final version reflect the mistakes you did in
the draft?

10 / 32Git: How to Clean (and Rewrite) History

Approach 2: History is a set of lies agreed upon

• Popular approach with modern VCS (Git, Mercurial. . .)
• History tries to show the best logical path from one point to
another

• Pros:
• See above: blame, bisect, ...
• Code review
• Claim that you are a better programmer than you really are!

11 / 32Git: How to Clean (and Rewrite) History

Another View About Version Control

• 2 roles of version control:
• For beginners: help the code reach upstream.
• For advanced users: prevent bad code from reaching upstream.

• Several opportunities to reject bad code:
• Before/during commit
• Before push
• Before merge

12 / 32Git: How to Clean (and Rewrite) History

What is a clean history

• Each commit introduce small group of related changes (≈ 100
lines changed max, no minimum!)

• Each commit is compilable and passes all tests (“bisectable
history”)

• “Good” commit messages

13 / 32Git: How to Clean (and Rewrite) History

Writing good commit messages

Reminder: good comments

• Bad:
1 int i; // Declare i of type int
2 for (i = 0; i < 10; i++) { ... }
3 f(i)

• Possibly good:
1 int i; // We need to declare i outside the for
2 // loop because we’ll use it after.
3 for (i = 0; i < 10; i++) { ... }
4 f(i)

14 / 32Git: How to Clean (and Rewrite) History

Reminder: good comments

• Bad: What? The code already tells
1 int i; // Declare i of type int
2 for (i = 0; i < 10; i++) { ... }
3 f(i)

• Possibly good: Why? Usually the relevant question
1 int i; // We need to declare i outside the for
2 // loop because we’ll use it after.
3 for (i = 0; i < 10; i++) { ... }
4 f(i)

14 / 32Git: How to Clean (and Rewrite) History

Reminder: good comments

• Bad: What? The code already tells
1 int i; // Declare i of type int
2 for (i = 0; i < 10; i++) { ... }
3 f(i)

• Possibly good: Why? Usually the relevant question
1 int i; // We need to declare i outside the for
2 // loop because we’ll use it after.
3 for (i = 0; i < 10; i++) { ... }
4 f(i)

Common rule: if your code isn’t clear enough,
rewrite it to make it clearer
instead of adding comments.

14 / 32Git: How to Clean (and Rewrite) History

Good commit messages

• Recommended format:
One-line description (< 50 characters)

Explain here why your change is good.

• Write your commit messages like an email: subject and body
• Imagine your commit message is an email sent to the
maintainer, trying to convince him to merge your code2

• Don’t use git commit -m

2Not just imagination, see git send-email
15 / 32Git: How to Clean (and Rewrite) History

Good commit messages: examples

https://github.com/git/git/commit/b1b49ff8d42a21ade6a72b40a147fd3eaff3db8d

daemon: plug memory leak

Call child_process_clear() when a child ends to release the memory
allocated for its environment. This is necessary because unlike all
other users of start_command() we don’t call finish_command(), which
would have taken care of that for us.

This leak was introduced by f063d38 (daemon: use cld->env_array
when re-spawning).

Signed-off-by: Rene Scharfe <l.s.r@web.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>

16 / 32Git: How to Clean (and Rewrite) History

https://github.com/git/git/commit/b1b49ff8d42a21ade6a72b40a147fd3eaff3db8d

Good commit messages: counter-example

http://git.savannah.gnu.org/cgit/emacs.git/commit/?id=19e09cfab61436cb4590303871a31ee07624f5ab

Ensure redisplay after evaluation

* lisp/progmodes/elisp-mode.el (elisp–eval-last-sexp): Revert
last change.
* lisp/frame.el (redisplay–variables): Populate the
redisplay–variables list.
* src/xdisp.c (maybe_set_redisplay): New function.
(syms_of_xdisp) <redisplay–variables>: New variable.
* src/window.h (maybe_set_redisplay): Declare prototype.
* src/data.c (set_internal): Call maybe_set_redisplay. (Bug#21835)

Not much the patch didn’t already say ... (do you understand the
problem the commit is trying to solve?)

17 / 32Git: How to Clean (and Rewrite) History

http://git.savannah.gnu.org/cgit/emacs.git/commit/?id=19e09cfab61436cb4590303871a31ee07624f5ab

Partial commits, the index

18 / 32Git: How to Clean (and Rewrite) History

The index, or “Staging Area”

• “the index” is where the next commit is prepared
• Contains the list of files and their content
• git commit transforms the index into a commit
• git commit -a stages all changes in the worktree in the

index before committing. You’ll find it sloppy soon.

19 / 32Git: How to Clean (and Rewrite) History

Dealing with the index

• Commit only 2 files:
git add file1.txt
git add file2.txt
git commit

• Commit only some patch hunks:
git add -p
(answer yes or no for each hunk)
git commit

20 / 32Git: How to Clean (and Rewrite) History

git add -p: example

$ git add -p

@@ -1,7 +1,7 @@
int main()

- int i;
+ int i = 0;

printf("Hello, ");
i++;

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? y

@@ -5,6 +5,6 @@

- printf("i is %s\n", i);
+ printf("i is %d\n", i);

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? n

$ git commit -m "Initialize i properly"
[master c4ba68b] Initialize i properly
1 file changed, 1 insertion(+), 1 deletion(-)

21 / 32Git: How to Clean (and Rewrite) History

git add -p: example

$ git add -p

@@ -1,7 +1,7 @@
int main()

- int i;
+ int i = 0;

printf("Hello, ");
i++;

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? y

@@ -5,6 +5,6 @@

- printf("i is %s\n", i);
+ printf("i is %d\n", i);

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? n

$ git commit -m "Initialize i properly"
[master c4ba68b] Initialize i properly
1 file changed, 1 insertion(+), 1 deletion(-)

21 / 32Git: How to Clean (and Rewrite) History

git add -p: example

$ git add -p

@@ -1,7 +1,7 @@
int main()

- int i;
+ int i = 0;

printf("Hello, ");
i++;

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? y

@@ -5,6 +5,6 @@

- printf("i is %s\n", i);
+ printf("i is %d\n", i);

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? n

$ git commit -m "Initialize i properly"
[master c4ba68b] Initialize i properly
1 file changed, 1 insertion(+), 1 deletion(-)

21 / 32Git: How to Clean (and Rewrite) History

git add -p: dangers

• Commits created with git add -p do not correspond to
what you have on disk

• You probably never tested this commit ...
• Solutions:

• git stash -k: stash what’s not in the index
• git rebase --exec: see later
• (and code review)

22 / 32Git: How to Clean (and Rewrite) History

Clean local history

Example

Implement git clone -c var=value : 9 preparation patches, 1
real (trivial) patch at the end!

https://github.com/git/git/commits/
84054f79de35015fc92f73ec4780102dd820e452

Did the author actually write this in this order?

23 / 32Git: How to Clean (and Rewrite) History

https://github.com/git/git/commits/84054f79de35015fc92f73ec4780102dd820e452
https://github.com/git/git/commits/84054f79de35015fc92f73ec4780102dd820e452

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 1: merge (default with git pull)

A Merge1 B C

Merge2

• Drawbacks:
• Merge1 is not relevant, distracts reviewers (unlike Merge2).

24 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 1: merge (default with git pull)

A Merge1 B C

Merge2

• Drawbacks:
• Merge1 is not relevant, distracts reviewers (unlike Merge2).

24 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 1: merge (default with git pull)

A

Merge1 B C

Merge2

• Drawbacks:
• Merge1 is not relevant, distracts reviewers (unlike Merge2).

24 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 1: merge (default with git pull)

A

Merge1 B C

Merge2

• Drawbacks:
• Merge1 is not relevant, distracts reviewers (unlike Merge2).

24 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 1: merge (default with git pull)

A Merge1

B C

Merge2

• Drawbacks:
• Merge1 is not relevant, distracts reviewers (unlike Merge2).

24 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 1: merge (default with git pull)

A Merge1

B C

Merge2

• Drawbacks:
• Merge1 is not relevant, distracts reviewers (unlike Merge2).

24 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 1: merge (default with git pull)

A Merge1 B C

Merge2

• Drawbacks:
• Merge1 is not relevant, distracts reviewers (unlike Merge2).

24 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 1: merge (default with git pull)

A Merge1 B C

Merge2

• Drawbacks:
• Merge1 is not relevant, distracts reviewers (unlike Merge2).

24 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 1: merge (default with git pull)

A Merge1 B C

Merge2

• Drawbacks:
• Merge1 is not relevant, distracts reviewers (unlike Merge2).

24 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 2: no merge

A B C

Merge2

• Drawbacks:
• In case of conflict, they have to be resolved by the developer

merging into upstream (possibly after code review)
• Not always applicable (e.g. “I need this new upstream feature

to continue working”)

25 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 2: no merge

A B C

Merge2

• Drawbacks:
• In case of conflict, they have to be resolved by the developer

merging into upstream (possibly after code review)
• Not always applicable (e.g. “I need this new upstream feature

to continue working”)

25 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 2: no merge

A

B C

Merge2

• Drawbacks:
• In case of conflict, they have to be resolved by the developer

merging into upstream (possibly after code review)
• Not always applicable (e.g. “I need this new upstream feature

to continue working”)

25 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 2: no merge

A

B C

Merge2

• Drawbacks:
• In case of conflict, they have to be resolved by the developer

merging into upstream (possibly after code review)
• Not always applicable (e.g. “I need this new upstream feature

to continue working”)

25 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 2: no merge

A B C

Merge2

• Drawbacks:
• In case of conflict, they have to be resolved by the developer

merging into upstream (possibly after code review)
• Not always applicable (e.g. “I need this new upstream feature

to continue working”)

25 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 2: no merge

A B C

Merge2

• Drawbacks:
• In case of conflict, they have to be resolved by the developer

merging into upstream (possibly after code review)
• Not always applicable (e.g. “I need this new upstream feature

to continue working”)

25 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

• Drawbacks: rewriting history implies:
• A’, A”, B’, C’ probably haven’t been tested (never existed on

disk)
• What if someone branched from A, A’, B or C?
• Basic rule: don’t rewrite published history

26 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

• Drawbacks: rewriting history implies:
• A’, A”, B’, C’ probably haven’t been tested (never existed on

disk)
• What if someone branched from A, A’, B or C?
• Basic rule: don’t rewrite published history

26 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 3: rebase (git rebase or git pull --rebase)

A

A’

B

C

A”

B’

C’

Merge2

master

topic

• Drawbacks: rewriting history implies:
• A’, A”, B’, C’ probably haven’t been tested (never existed on

disk)
• What if someone branched from A, A’, B or C?
• Basic rule: don’t rewrite published history

26 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 3: rebase (git rebase or git pull --rebase)

A

A’

B

C

A”

B’

C’

Merge2

master

topic

• Drawbacks: rewriting history implies:
• A’, A”, B’, C’ probably haven’t been tested (never existed on

disk)
• What if someone branched from A, A’, B or C?
• Basic rule: don’t rewrite published history

26 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

topic

• Drawbacks: rewriting history implies:
• A’, A”, B’, C’ probably haven’t been tested (never existed on

disk)
• What if someone branched from A, A’, B or C?
• Basic rule: don’t rewrite published history

26 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

topic

• Drawbacks: rewriting history implies:
• A’, A”, B’, C’ probably haven’t been tested (never existed on

disk)
• What if someone branched from A, A’, B or C?
• Basic rule: don’t rewrite published history

26 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

topic

• Drawbacks: rewriting history implies:
• A’, A”, B’, C’ probably haven’t been tested (never existed on

disk)
• What if someone branched from A, A’, B or C?
• Basic rule: don’t rewrite published history

26 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

topic

• Drawbacks: rewriting history implies:
• A’, A”, B’, C’ probably haven’t been tested (never existed on

disk)
• What if someone branched from A, A’, B or C?
• Basic rule: don’t rewrite published history

26 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2
master

topic

• Drawbacks: rewriting history implies:
• A’, A”, B’, C’ probably haven’t been tested (never existed on

disk)
• What if someone branched from A, A’, B or C?
• Basic rule: don’t rewrite published history

26 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2
master

topic

• Drawbacks: rewriting history implies:
• A’, A”, B’, C’ probably haven’t been tested (never existed on

disk)
• What if someone branched from A, A’, B or C?
• Basic rule: don’t rewrite published history

26 / 32Git: How to Clean (and Rewrite) History

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

• Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2
master

topic

• Drawbacks: rewriting history implies:
• A’, A”, B’, C’ probably haven’t been tested (never existed on

disk)
• What if someone branched from A, A’, B or C?
• Basic rule: don’t rewrite published history

26 / 32Git: How to Clean (and Rewrite) History

Rewriting history with rebase -i

• git rebase: take all your commits, and re-apply them onto
upstream

• git rebase -i: show all your commits, and asks you what
to do when applying them onto upstream.

27 / 32Git: How to Clean (and Rewrite) History

Rewriting history with rebase -i

pick ca6ed7a Start feature A
pick e345d54 Bugfix found when implementing A
pick c03fffc Continue feature A
pick 5bdb132 Oops, previous commit was totally buggy

Rebase 9f58864..5bdb132 onto 9f58864
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit’s log message
x, exec = run command (the rest of the line) using shell
#
These lines can be re-ordered; they are executed from top to bottom.
#
If you remove a line here THAT COMMIT WILL BE LOST.
#
However, if you remove everything, the rebase will be aborted.
#

Note that empty commits are commented out

28 / 32Git: How to Clean (and Rewrite) History

git rebase -i commands (1/2)

p, pick use commit (by default)
r, reword use commit, but edit the commit message

Fix a typo in a commit message
e, edit use commit, but stop for amending

 Once stopped, use git add -p, git commit
–amend,...

s, squash use commit, but meld into previous commit
f, fixup like "squash", but discard this commit’s log message

 Very useful when polishing a set of commits
(before or after review): make a bunch of short fixup
patches, and squash them into the real commits. No
one will know you did this mistake ;-).

29 / 32Git: How to Clean (and Rewrite) History

git rebase -i commands (2/2)

x, exec run command (the rest of the line) using shell
• Example: exec make check. Run tests for this
commit, stop if test fail.

• Use git rebase -i --exec ’make check’3

to run make check for each rebased commit.

3Implemented by Ensimag students!
30 / 32Git: How to Clean (and Rewrite) History

Repairing mistakes: the reflog

Git’s reference journal: the reflog

• Remember the history of local refs.
• 6= ancestry relation.

A A’

B

C

A”

B’

C’

Merge2
master

topic

topic@{0}topic@{1}

topic@{2}

HEAD@{1}

HEAD@{2}

• ref @{n }: where ref was before the n last ref update.
• ref ~n : the n-th generation ancestor of ref
• ref ˆ: first parent of ref
• git help revisions for more

31 / 32Git: How to Clean (and Rewrite) History

Git’s reference journal: the reflog

• Remember the history of local refs.
• 6= ancestry relation.

A A’

B

C

A”

B’

C’

Merge2
master

topic

topic@{0}topic@{1}

topic@{2}

HEAD@{1}

HEAD@{2}

• ref @{n }: where ref was before the n last ref update.
• ref ~n : the n-th generation ancestor of ref
• ref ˆ: first parent of ref
• git help revisions for more

31 / 32Git: How to Clean (and Rewrite) History

Git’s reference journal: the reflog

• Remember the history of local refs.
• 6= ancestry relation.

A A’

B

C

A”

B’

C’

Merge2
master

topic

topic@{0}topic@{1}

topic@{2}

HEAD@{1}

HEAD@{2}

• ref @{n }: where ref was before the n last ref update.
• ref ~n : the n-th generation ancestor of ref
• ref ˆ: first parent of ref
• git help revisions for more

31 / 32Git: How to Clean (and Rewrite) History

Git’s reference journal: the reflog

• Remember the history of local refs.
• 6= ancestry relation.

A A’

B

C

A”

B’

C’

Merge2
master

topic

topic@{0}topic@{1}

topic@{2}

HEAD@{1}

HEAD@{2}

• ref @{n }: where ref was before the n last ref update.
• ref ~n : the n-th generation ancestor of ref
• ref ˆ: first parent of ref
• git help revisions for more

31 / 32Git: How to Clean (and Rewrite) History

More Documentation

More Documentation

• http://ensiwiki.ensimag.fr/index.php/Maintenir_
un_historique_propre_avec_Git

• http://ensiwiki.ensimag.fr/index.php/Ecrire_de_
bons_messages_de_commit_avec_Git

32 / 32Git: How to Clean (and Rewrite) History

http://ensiwiki.ensimag.fr/index.php/Maintenir_un_historique_propre_avec_Git
http://ensiwiki.ensimag.fr/index.php/Maintenir_un_historique_propre_avec_Git
http://ensiwiki.ensimag.fr/index.php/Ecrire_de_bons_messages_de_commit_avec_Git
http://ensiwiki.ensimag.fr/index.php/Ecrire_de_bons_messages_de_commit_avec_Git

	Clean History: Why?
	Writing good commit messages
	Partial commits, the index
	Clean local history
	Avoiding merge commits: rebase Vs merge
	Rewriting history with rebase -i

	Repairing mistakes: the reflog
	More Documentation

