
Using Git

Sylvain Bouveret, Grégory Mounié, Matthieu Moy
2017
[first].[last]@imag.fr

http://recherche.noiraudes.net/resources/git/Slides/git-slides.pdf

http://recherche.noiraudes.net/resources/git/Slides/git-slides.pdf

First, safety instructions...

2 / 27Using Git

Revision Control System

Backups: The Good Old Time

• Basic problems:
• “Oh, my disk crashed.” / “Someone has stolen my laptop!”
• “@#%!!, I’ve just deleted this important file!”
• “Oops, I introduced a bug a long time ago in my code, how

can I see how it was before?”

• Historical solutions:

• Replicate:
$ cp -r ~/project/ ~/backup/
(or better, copy to a remote machine)

• Keep history:
$ cp -r ~/project/ ~/backup/project-2015-02-02

• . . .

3 / 27Using Git

Backups: The Good Old Time

• Basic problems:
• “Oh, my disk crashed.” / “Someone has stolen my laptop!”
• “@#%!!, I’ve just deleted this important file!”
• “Oops, I introduced a bug a long time ago in my code, how

can I see how it was before?”
• Historical solutions:

• Replicate:
$ cp -r ~/project/ ~/backup/
(or better, copy to a remote machine)

• Keep history:
$ cp -r ~/project/ ~/backup/project-2015-02-02

• . . .

3 / 27Using Git

Collaborative Development: The Good Old Time

• Basic problems: Several persons working on the same set of
files
1. “Hey, you’ve modified the same file as me, how do we merge?”,
2. “Your modifications are broken, your code doesn’t even

compile. Fix your changes before sending it to me!”,
3. “Your bug fix here seems interesting, but I don’t want your

other changes”.

• Historical solutions:

• Never two person work at the same time. ⇒ Doesn’t scale up!
Unsafe.

• People work on the same directory (same machine, NFS,
ACLs. . .)
⇒ Painful because of (2) above.

• People work trying to avoid conflicts, and merge later.

4 / 27Using Git

Collaborative Development: The Good Old Time

• Basic problems: Several persons working on the same set of
files
1. “Hey, you’ve modified the same file as me, how do we merge?”,
2. “Your modifications are broken, your code doesn’t even

compile. Fix your changes before sending it to me!”,
3. “Your bug fix here seems interesting, but I don’t want your

other changes”.
• Historical solutions:

• Never two person work at the same time. ⇒ Doesn’t scale up!
Unsafe.

• People work on the same directory (same machine, NFS,
ACLs. . .)
⇒ Painful because of (2) above.

• People work trying to avoid conflicts, and merge later.

4 / 27Using Git

Merging: Problem and Solution

My version

#include <stdio.h>

int main () {
printf("Hello");

return EXIT_SUCCESS;
}

Your version

#include <stdio.h>

int main () {
printf("Hello!\n");

return 0;
}

Common ancestor

#include <stdio.h>

int main () {
printf("Hello");

return 0;
}

This merge can be done for you by an automatic tool

Merging relies on history!

Collaborative development linked to backups

5 / 27Using Git

Merging: Problem and Solution

My version

#include <stdio.h>

int main () {
printf("Hello");

return EXIT_SUCCESS;
}

Your version

#include <stdio.h>

int main () {
printf("Hello!\n");

return 0;
}

Common ancestor

#include <stdio.h>

int main () {
printf("Hello");

return 0;
}

This merge can be done for you by an automatic tool

Merging relies on history!

Collaborative development linked to backups

5 / 27Using Git

Merging: Problem and Solution

My version

#include <stdio.h>

int main () {
printf("Hello");

return EXIT_SUCCESS;
}

Your version

#include <stdio.h>

int main () {
printf("Hello!\n");

return 0;
}

Common ancestor

#include <stdio.h>

int main () {
printf("Hello");

return 0;
}

This merge can be done for you by an automatic tool

Merging relies on history!

Collaborative development linked to backups

5 / 27Using Git

Merging: Problem and Solution

My version

#include <stdio.h>

int main () {
printf("Hello");

return EXIT_SUCCESS;
}

Your version

#include <stdio.h>

int main () {
printf("Hello!\n");

return 0;
}

Common ancestor

#include <stdio.h>

int main () {
printf("Hello");

return 0;
}

This merge can be done for you by an automatic tool

Merging relies on history!

Collaborative development linked to backups

5 / 27Using Git

Merging

Space of possible revisions
(arbitrarily represented in 2D)

6 / 27Using Git

Merging

Space of possible revisions
(arbitrarily represented in 2D)

Mine

Yours

6 / 27Using Git

Merging

Space of possible revisions
(arbitrarily represented in 2D)

Ancestor

Mine

Yours

6 / 27Using Git

Merging

Space of possible revisions
(arbitrarily represented in 2D)

Ancestor

Mine

Yours

Merged revision

6 / 27Using Git

Revision Control System: Basic Idea

• Keep track of history:
• commit = snapshot of the current state,
• Meta-data (user’s name, date, descriptive message,. . .)

recorded in commit.
• Use it for merging/collaborative development.

• Each user works on its own copy,
• User explicitly “takes” modifications from others when (s)he

wants.

• Efficient storage/compression (“delta-compression ≈
incremental backup”)

7 / 27Using Git

Revision Control System: Basic Idea

• Keep track of history:
• commit = snapshot of the current state,
• Meta-data (user’s name, date, descriptive message,. . .)

recorded in commit.
• Use it for merging/collaborative development.

• Each user works on its own copy,
• User explicitly “takes” modifications from others when (s)he

wants.

• Efficient storage/compression (“delta-compression ≈
incremental backup”)

7 / 27Using Git

Git: Basic Principles

Git: Basic concepts

• Each working directory contains:
• The files you work on (as usual)
• The history, or “repository” (in the directory .git/)

• Basic operations:
• git clone: get a copy of an existing repository (files + history)
• git commit: create a new revision in a repository
• git pull: get revisions from a repository
• git push: send revisions to a repository
• git add, git rm and git mv: tell Git which files should be

tracked
• git status: know what’s going on

8 / 27Using Git

Git Vs Others

A bit of history

1986: Birth of CVS, centralized version system
2000: Birth of Subversion (SVN), a replacement for CVS

with the same concepts
2005: First version of Git

9 / 27Using Git

Git and the Linux Kernel

1991: Linus Torvalds starts writing Linux, using mostly
tar+patch,

2002: Linux adopts BitKeeper, a proprietary decentralized
version control system (available free of cost for
Linux),

2002-2005: Flamewars against BitKeeper, some Free Software
alternatives appear (GNU Arch, Darcs, Monotone).
None are good enough technically.

2005: BitKeeper’s free of cost license revoked. Linux has to
migrate.

2005: Unsatisfied with the alternatives, Linus decides to
start his own project, Git.

10 / 27Using Git

Git and the Linux Kernel

1991: Linus Torvalds starts writing Linux, using mostly
tar+patch,

2002: Linux adopts BitKeeper, a proprietary decentralized
version control system (available free of cost for
Linux),

2002-2005: Flamewars against BitKeeper, some Free Software
alternatives appear (GNU Arch, Darcs, Monotone).
None are good enough technically.

2005: BitKeeper’s free of cost license revoked. Linux has to
migrate.

2005: Unsatisfied with the alternatives, Linus decides to
start his own project, Git.

10 / 27Using Git

Git and the Linux Kernel

2007: Many young, but good projects for decentralized
revision control: Git, Mercurial, Bazaar, Monotone,
Darcs, . . .

2014: Git is the most widely used according to Eclipse
user’s survey.

11 / 27Using Git

Who Makes Git?

$ git shortlog -s –no-merges | sort -nr | head -30
6836 Junio C Hamano ← Google (full-time on Git)
2699 Jeff King ← GitHub (≈ full-time on Git)
1290 Shawn O. Pearce ← Google
1121 Johannes Schindelin ← Microsoft (full-time on Git)
1103 Linus Torvalds (No longer very active contributor)
1100 Nguyen Thái Ngoc Duy
937 Michael Haggerty ← GitHub
768 René Scharfe
739 Jonathan Nieder ← Google
539 Eric Wong
512 Jakub Narębski
498 Christian Couder ← Booking.com (50% on Git)
449 Johannes Sixt
[...]
284 Matthieu Moy (rank 30 / 1140)

12 / 27Using Git

Git Adoption (Debian popularity contest)

13 / 27Using Git

Git Adoption (Job offers)

14 / 27Using Git

Git Adoption (Job offers)

14 / 27Using Git

Git Adoption (Hosting)

• 2015: “There are 11.6M people collaborating right now across
29.1M repositories on GitHub” https://github.com/about/press

• 2017: 25M people and 75M repositories
• How about Mercurial?

15 / 27Using Git

https://github.com/about/press

Summary of Available Options

• Centralized
• RCS, CVS: Outdated
• SVN: Does the job

• Decentralized
• Git: Fast, powerful, popular
• Mercurial (hg): Very similar to Git but designed to be

simpler. Less popular but very active too.
• Bazaar (bzr): Development stopped in 2013
• Monotone (mtn): Invented the core concepts behind Git,

slow, never took up
• Darcs: Novel design, slow (exponential worst-case), never

took up

16 / 27Using Git

CVS and SVN: Commit/Update Approach

Space of possible revisions

17 / 27Using Git

CVS and SVN: Commit/Update Approach

Space of possible revisions

Existing revision

17 / 27Using Git

CVS and SVN: Commit/Update Approach

Space of possible revisions

Existing revision
User works on a checkout

17 / 27Using Git

CVS and SVN: Commit/Update Approach

Space of possible revisions

Existing revision
User works on a checkout

New upstream
revision

17 / 27Using Git

CVS and SVN: Commit/Update Approach

Space of possible revisions

Existing revision

New upstream
revision

User works on a checkout

17 / 27Using Git

CVS and SVN: Commit/Update Approach

Space of possible revisions

Existing revision

New upstream
revision

User works on a checkout

17 / 27Using Git

CVS and SVN: Commit/Update Approach

Space of possible revisions

Existing revision

New upstream
revision

User works on a checkout

New upstream
revision

17 / 27Using Git

CVS and SVN: Commit/Update Approach

Space of possible revisions

Existing revision

New upstream
revision

User works on a checkout

New upstream
revision User runs “update”

17 / 27Using Git

CVS and SVN: Commit/Update Approach

Space of possible revisions

Existing revision

New upstream
revision

New upstream
revision User runs “update”

17 / 27Using Git

CVS and SVN: Commit/Update Approach

Space of possible revisions

Existing revision

New upstream
revision

New upstream
revision

commit creates
new revision

17 / 27Using Git

Commit/Update Approach : limitations

• A change is either “uncommited” or “cast in stone”
• Update before commit: what if the merge fails?
• No easy way to contribute to a repo without write permission

18 / 27Using Git

Decentralized Version Control

Decentralized:
Each developer has its own repository

• Works offline, fast (I1 use git more than ls and cd !)
• Replicate data (⇒ safer)
• No need for a server, creating a repo is cheap (I1 have 200
repos on my account)

• Private space (draft, not cast in stone)
• Different workflows

1 Matthieu Moy speaking (2015)

19 / 27Using Git

Decentralized Version Control

Decentralized:
Each developer has its own repository

• Works offline, fast (I1 use git more than ls and cd !)
• Replicate data (⇒ safer)
• No need for a server, creating a repo is cheap (I1 have 200
repos on my account)

• Private space (draft, not cast in stone)
• Different workflows

1 Matthieu Moy speaking (2015)
19 / 27Using Git

Example

Starting the project with Git

A

B

Shared Repository
ldb42

20 / 27Using Git

Starting the project with Git

A

B

Shared Repository
ldb42

A

B

Alice

clone

20 / 27Using Git

Starting the project with Git

A

B

Shared Repository
ldb42

A

B

Alice

clone

D

commit

20 / 27Using Git

Starting the project with Git

A

B

Shared Repository
ldb42

A

B

Alice

clone

D

commit

A

B

Bob

clone

20 / 27Using Git

Starting the project with Git

A

B

Shared Repository
ldb42

A

B

Alice

clone

D

commit

A

B

Bob

clone

E

commit

20 / 27Using Git

Starting the project with Git

A

B

Shared Repository
ldb42

A

B

Alice

clone

D

commit

A

B

Bob

clone

E

commit
D

push

20 / 27Using Git

Starting the project with Git

A

B

Shared Repository
ldb42

A

B

Alice

clone

D

commit

A

B

Bob

clone

E

commit
D

push
D

M

pull

20 / 27Using Git

Starting the project with Git

A

B

Shared Repository
ldb42

A

B

Alice

clone

D

commit

A

B

Bob

clone

E

commit
D

push
D

M

pull

F

commit

20 / 27Using Git

Starting the project with Git

A

B

Shared Repository
ldb42

A

B

Alice

clone

D

commit

A

B

Bob

clone

E

commit
D

push
D

M

pull

F

commit

E

M

F

push

20 / 27Using Git

Starting the project with Git: in Practice

Alice$ git clone git@github.com:moy/git-training.git git-training
Initialized empty Git repository in /perms/Alice/git-training/.git/
remote: Counting objects: 960, done.
remote: Compressing objects: 100% (555/555), done.
remote: Total 960 (delta 341), reused 949 (delta 330)
Receiving objects: 100% (960/960), 1.51 MiB, done.
Resolving deltas: 100% (341/341), done.

21 / 27Using Git

Starting the project with Git: in Practice

Alice$ git clone git@github.com:moy/git-training.git git-training
Alice$ cd git-training/sandbox
Alice$ vi hello.c

21 / 27Using Git

Starting the project with Git: in Practice

Alice$ git clone git@github.com:moy/git-training.git git-training
Alice$ cd git-training/sandbox
Alice$ vi hello.c
Alice$ git status
On branch master
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes ...
#
modified: hello.c
#

21 / 27Using Git

Starting the project with Git: in Practice

Alice$ git clone git@github.com:moy/git-training.git git-training
Alice$ cd git-training/sandbox
Alice$ vi hello.c
Alice$ git status
Alice$ git diff HEAD
--- a/projet/sandbox/hello.c
+++ b/projet/sandbox/hello.c
@@ -1,5 +1,5 @@
/* Chacun ajoute son nom ici */

-/* Auteurs : ... et ... */
+/* Auteurs : Alice et ... */

#include <stdio.h>

21 / 27Using Git

Starting the project with Git: in Practice

Alice$ git clone git@github.com:moy/git-training.git git-training
Alice$ cd git-training/sandbox
Alice$ vi hello.c
Alice$ git status
Alice$ git diff HEAD
Alice$ git commit -a
[master d943af5] Added my name.
1 files changed, 1 insertions(+), 1 deletions(-)

21 / 27Using Git

Starting the project with Git: in Practice

Alice$ git clone git@github.com:moy/git-training.git git-training
Alice$ cd git-training/sandbox
Alice$ vi hello.c
Alice$ git status
Alice$ git diff HEAD
Alice$ git commit -a
Alice$ git log
commit d943af53ec13b43eac31d4cca3b11f51746a90cc
Author: Alice <Alice@ensimag.imag.fr>

Added my name.

commit 96e1dead6dc0f8e23308726d22bbf42d0e99352f
Author: Equipe ldb42 <ldb42@example.com>

Personalisation du dépôt pour ldb42

21 / 27Using Git

Starting the project with Git

A

B

Shared Repository
ldb42

A

B

Alice

clone

D

commit

22 / 27Using Git

Starting the project with Git: in Practice

Bob$ git clone git@github.com:moy/git-training.git git-training
Initialized empty Git repository in /perms/Bob/git-training/.git/
remote: Counting objects: 960, done.
remote: Compressing objects: 100% (555/555), done.
remote: Total 960 (delta 341), reused 949 (delta 330)
Receiving objects: 100% (960/960), 1.51 MiB, done.
Resolving deltas: 100% (341/341), done.

23 / 27Using Git

Starting the project with Git: in Practice

Bob$ git clone git@github.com:moy/git-training.git git-training
Bob$ cd git-training/sandbox
Bob$ vi hello.c

23 / 27Using Git

Starting the project with Git: in Practice

Bob$ git clone git@github.com:moy/git-training.git git-training
Bob$ cd git-training/sandbox
Bob$ vi hello.c
Bob$ git commit -a
[master ae00028] Removed a piece of code.
1 files changed, 0 insertions(+), 10 deletions(-)

23 / 27Using Git

Starting the project with Git: in Practice

Bob$ git clone git@github.com:moy/git-training.git git-training
Bob$ cd git-training/sandbox
Bob$ vi hello.c
Bob$ git commit -a
Bob$ git log
commit ae000285167885b286401ea3eb3379a7a3946260
Author: Bob <Bob@example.com>
Date: Thu Nov 19 16:52:53 2009 +0100

Removed a piece of code.

commit 96e1dead6dc0f8e23308726d22bbf42d0e99352f
Author: Equipe ldb42 <ldb42@example.com>
Date: Thu Nov 19 16:30:54 2009 +0100

Personalisation du dépôt pour ldb42

23 / 27Using Git

Starting the project with Git

A

B

Shared Repository
ldb42

A

B

Alice

clone

D

commit

A

B

Bob

clone

E

commit

24 / 27Using Git

Starting the project with Git: in Practice

back to Alice
Alice$ git push
Counting objects: 9, done.
Delta compression using up to 16 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (5/5), 432 bytes, done.
Total 5 (delta 2), reused 0 (delta 0)
To git@github.com:moy/git-training.git

96e1dea..ae00028 master -> master

25 / 27Using Git

Starting the project with Git: in Practice

back to Alice
Alice$ git push

back to Bob
Bob$ git push
To git@github.com:moy/git-training.git
! [rejected] master -> master (non-fast forward)

error: failed to push some refs to ’git@github.com:moy/git-training.git’
hint: Updates were rejected because the tip of your current branch is
hint: behind its remote counterpart. Integrate the remote changes (e.g.
hint: ’git pull ...’) before pushing again.
hint: See the ’Note about fast-forwards’ in ’git push –help’ for details.

25 / 27Using Git

Starting the project with Git: in Practice

back to Alice
Alice$ git push

back to Bob
Bob$ git push
Bob$ git pull
Unpacking objects: 100% (5/5), done.
From git@github.com:moy/git-training.git

96e1dea..ae00028 master -> origin/master
Auto-merging sandbox/hello.c
Merge made by recursive.
sandbox/hello.c | 10 –––––
1 files changed, 0 insertions(+), 10 deletions(-)

25 / 27Using Git

Starting the project with Git: in Practice

back to Alice
Alice$ git push

back to Bob
Bob$ git push
Bob$ git pull
Bob$ vi hello.c
Bob$ git commit -a
[master ee9f864] Test
1 files changed, 1 insertions(+), 0 deletions(-)

25 / 27Using Git

Starting the project with Git: in Practice

back to Alice
Alice$ git push

back to Bob
Bob$ git push
Bob$ git pull
Bob$ vi hello.c
Bob$ git commit -a
Bob$ git log --graph --oneline
* ee9f864 Test
* 830a084 Merge branch ’master’ of ...
|\
| * ae00028 Removed a piece of code.
* | d943af5 Added my name.
|/
* 96e1dea Personalisation du dépôt pour ldb42

25 / 27Using Git

Starting the project with Git: in Practice

back to Alice
Alice$ git push

back to Bob
Bob$ git push
Bob$ git pull
Bob$ vi hello.c
Bob$ git commit -a
Bob$ git log --graph --oneline
Bob$ git push
Counting objects: 23, done.
Delta compression using up to 16 threads.
Compressing objects: 100% (12/12), done.
Writing objects: 100% (15/15), 1.20 KiB, done.
Total 15 (delta 6), reused 0 (delta 0)
To git@github.com:moy/git-training.git

ae00028..ee9f864 master -> master

25 / 27Using Git

Starting the project with Git

A

B

Shared Repository
ldb42

A

B

Alice

clone

D

commit

A

B

Bob

clone

E

commit
D

push
D

M

pull

F

commit

E

M

F

push

26 / 27Using Git

Advices Using Git

Advices Using Git (for beginners)

• Never exchange files outside Git’s control (email, scp, usb
key), except if you really know what you’re doing;

• SVN behaviour:
• git commit with -a;
• Make a git push after each git commit -a (use git pull

if needed);

• Do git pull regularly, to remain synchronized with your
teammates. You need to make a git commit -a before you
can make a git pull (this is to avoid mixing manual
changes with merges).

• Do not make useless changes to your code. Do not let your
editor/IDE reformat code that is not yours.

27 / 27Using Git

Advices Using Git (for beginners)

• Never exchange files outside Git’s control (email, scp, usb
key), except if you really know what you’re doing;

• SVN behaviour:
• git commit with -a;
• Make a git push after each git commit -a (use git pull

if needed);

• Do git pull regularly, to remain synchronized with your
teammates. You need to make a git commit -a before you
can make a git pull (this is to avoid mixing manual
changes with merges).

• Do not make useless changes to your code. Do not let your
editor/IDE reformat code that is not yours.

27 / 27Using Git

	Revision Control System
	Git: Basic Principles
	Git Vs Others
	History
	Popularity
	Centralized Vs Decentralized

	An Example Using Git
	Advices Using Git

