
Git Workflows

Sylvain Bouveret, Grégory Mounié, Matthieu Moy
2017
[first].[last]@imag.fr

http://recherche.noiraudes.net/resources/git/git-workflow-slides.pdf

1 / 16Git Workflow

http://recherche.noiraudes.net/resources/git/git-workflow-slides.pdf

Goals of the presentation

• Global history: multiple workflow
• Global history: branching, rebasing, stashing

2 / 16Git Workflow

Workflows

Branches

Branching exists in most VCS. The goal is to keep track separately
of the various parallel works done on an on-going software
development.

This is Git killing feature: Git branch management (and merge) is
lightweight and efficient. Thus it is quite easy to split the work
among the developpers and still let them work easily together
toward the common goal.

But it is not a magic bullet: the splitting of the work should be
handle with care.

3 / 16Git Workflow

Example of bad splitting: per developer branches

Pro

• simple to define and set-up 3

Cons

• missing information: to find something, you need to know
who did it 7

• redundant information: committer and branch name are
strongly related 7

• confusing and error prone code sharing, blending new feature
development and bug correction 7

• developers use old version of common code 7

• As it does not enforce convergence of code ⇒ the multiple
incompatible development are increasingly difficult to merge 7

4 / 16Git Workflow

Better splitting: per topic branches

• master branch contain
release versions

• develop branch contain
ongoing development

• release branch to prepare
new release in master

• hotfix branch for bug
correction of release version

• feature branch to develop
new features

[Vincent Driessen,

http://nvie.com/posts/

a-successful-git-branching-model/]

5 / 16Git Workflow

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/

Code sharing models

Distributed VCS such as Git are ... distributed.

The code is thus modified at several places at the same time.
There are many different ways to share the code modifications
between repositories.

6 / 16Git Workflow

Code sharing: centralized workflow

central
repository

developer
repository

developer
repository

developer
repository

Similar to SVN way of
life, just fully operational
with branches, merge and
off-line work. Quite good
for small teams.

Additional transfers using
git are easy and safe !

The tricky part
The most important point is to use git for transfer patches. Any
transfer outside git can not be taken into account in futur merge.

7 / 16Git Workflow

Code sharing: centralized workflow

central
repository

developer
repository

developer
repository

developer
repository

Similar to SVN way of
life, just fully operational
with branches, merge and
off-line work. Quite good
for small teams.

Additional transfers using
git are easy and safe !

The tricky part
The most important point is to use git for transfer patches. Any
transfer outside git can not be taken into account in futur merge.

7 / 16Git Workflow

Centralized workflow

1 do {
2 while (nothing_interesting ())
3 work ();
4 while (uncommited_changes ()) {
5 while (! happy) { // git diff --staged ?
6 while (! enough) git add -p;
7 while (too_much) git reset -p;
8 }
9 git commit ; // no -a
10 if (nothing_interesting ())
11 git stash;
12 }
13 while (! happy)
14 git rebase -i;
15 } while (! done);
16 git push; // send code to central repository

8 / 16Git Workflow

Code sharing: Github workflow

blessed
repository

integration
repository

developer
private

repository

developer
public

repository

pull

pu
sh

pu
ll

pu
sh

• Released and official
branches are stored in the
blessed repository.

• Contributors forks and works
privately

• Contributors publish their
work and ask for merge

• Integrators merges then
publish the contributions

Public mailing list as public repository
Git patches can be send by email (git format-patch -1),
published in mailing-list (eg. bug-gnu-emacs@gnu.org), then
integrated (git am)

9 / 16Git Workflow

Code sharing: Github workflow

blessed
repository

integration
repository

developer
private

repository

developer
public

repository

pull

pu
sh

pu
ll

pu
sh

• Released and official
branches are stored in the
blessed repository.

• Contributors forks and works
privately

• Contributors publish their
work and ask for merge

• Integrators merges then
publish the contributions

Public mailing list as public repository
Git patches can be send by email (git format-patch -1),
published in mailing-list (eg. bug-gnu-emacs@gnu.org), then
integrated (git am)

9 / 16Git Workflow

Code sharing: Github workflow

blessed
repository

integration
repository

developer
private

repository

developer
public

repository

pull

pu
sh

pu
ll

pu
sh

• Released and official
branches are stored in the
blessed repository.

• Contributors forks and works
privately

• Contributors publish their
work and ask for merge

• Integrators merges then
publish the contributions

Public mailing list as public repository
Git patches can be send by email (git format-patch -1),
published in mailing-list (eg. bug-gnu-emacs@gnu.org), then
integrated (git am)

9 / 16Git Workflow

Code sharing: Github workflow

blessed
repository

integration
repository

developer
private

repository

developer
public

repository

pull

pu
sh

pu
ll

pu
sh

• Released and official
branches are stored in the
blessed repository.

• Contributors forks and works
privately

• Contributors publish their
work and ask for merge

• Integrators merges then
publish the contributions

Public mailing list as public repository
Git patches can be send by email (git format-patch -1),
published in mailing-list (eg. bug-gnu-emacs@gnu.org), then
integrated (git am)

9 / 16Git Workflow

Code sharing: Github workflow

blessed
repository

integration
repository

developer
private

repository

developer
public

repository

pull

pu
sh

pu
ll

pu
sh

• Released and official
branches are stored in the
blessed repository.

• Contributors forks and works
privately

• Contributors publish their
work and ask for merge

• Integrators merges then
publish the contributions

Public mailing list as public repository
Git patches can be send by email (git format-patch -1),
published in mailing-list (eg. bug-gnu-emacs@gnu.org), then
integrated (git am)

9 / 16Git Workflow

Triangular Workflow with pull-requests

• Developers pull from upstream, and push to a “to be merged”
location

• Someone else reviews the code and merges it upstream

Upstream A’s public repo

A’s private repo

clone, pull

pu
sh

merge
B’s public repo

B’s private repo

clo
ne,

pul
l

pu
sh

merge

10 / 16Git Workflow

Pull-requests in Practice

Contributor create a branch, commit, push
Contributor click “Create pull request” (GitHub, GitLab,

BitBucket, ...), or git request-pull

Maintainer receives an email
Maintainer review, comment, ask changes
Maintainer merge the pull-request

The code review is the major point for code quality insurance !

11 / 16Git Workflow

Code Review

• What we’d like:
1. A writes code, commits, pushes
2. B does a review
3. B merges to upstream

• What usually happens:
1. A writes code, commits, pushes
2. B does a review
3. B requests some changes
4. ... then ?

12 / 16Git Workflow

Iterating Code Reviews

• At least 2 ways to deal with changes between reviews:
1. Add more commits to the pull request and push them on top
2. Rewrite commits (rebase -i, . . .) and overwrite the old pull

request
• The resulting history is clean
• Much easier for reviewers joining the review effort at iteration

2
• e.g. On Git’s mailing-list, 10 iterations is not uncommon.

13 / 16Git Workflow

Code sharing: Linux kernel workflow

dictator
repository

public
repository

lieutenant
public

repository

developer
public

repository

developer
public

repository

• Code review and basic
filtering of contributions is
done by the lieutenants

• Final decision is done by the
benevolent dictator

• Lieutenant repositories are
the testbeds of new ideas
that mature in it before
upstream submission

14 / 16Git Workflow

Code sharing: remote management

Remote allows to work with several sources and sink

$ git remote add lieutenant git://.../public.git
$ git remote
origin
lieutenant
$ git fetch lieutenant
...
$ git branch -r
origin/HEAD -> origin/master
origin/master
lieutenant/master

$ git checkout -b lieutenant lieutenant/master

15 / 16Git Workflow

Branches and tags in practice

Branches and Tags in Practice

• Create a local branch and check it out:
git checkout -b branch-name

• Switch to a branch:
git checkout branch-name

• List local branches:
git branch

• List all branches (including remote-tracking):
git branch -a

• Create a tag:
git tag tag-name

16 / 16Git Workflow

	Workflows
	Branching models
	Merging models
	Code review in Triangular Workflows

	Branches and tags in practice

