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Introduction

Towards fairer collective decisions

Collective decision making...

A set of alternatives O

A set of agents A = {a1, . . . , an}...

...Expressing opinions (preferences) over the alternatives.
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Introduction

Towards fairer collective decisions

Collective decision making...

A set of alternatives O

A set of agents A = {a1, . . . , an}...

...Expressing opinions (preferences) over the alternatives.

⇓
Collective opinion, choice of an alternative...

2 / 45Towards Fairer Collective Decisions
▲



Introduction

Voting

Problem #1: Voting

We have to elect a representative from a set of m candidates on which the
n voters have diverse preferences.
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Introduction

Voting

Problem #1: Voting

We have to elect a representative from a set of m candidates on which the
n voters have diverse preferences.

Alternatives: candidates

Agents: voters

Preferences: ballots (linear orders, single-name ballots...)

Applications: political elections, middle or low-stake elections (e.g hire a
new colleague), choose a restaurant...
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Introduction

Fair division of indivisible goods

Problem #2: Discrete fair division

We have to allocate a set of m indivisible items to n agents having
different evaluations of these objects.

4 / 45Towards Fairer Collective Decisions
▲



Introduction

Fair division of indivisible goods

Problem #2: Discrete fair division

We have to allocate a set of m indivisible items to n agents having
different evaluations of these objects.

Agent 1 Agent 2 Agent 3 Agent 4

4 / 45Towards Fairer Collective Decisions
▲



Introduction

Fair division of indivisible goods

Problem #2: Discrete fair division

We have to allocate a set of m indivisible items to n agents having
different evaluations of these objects.

Agent 1 Agent 2 Agent 3 Agent 4

Object 1 Object 2 Object 3 Object 4 Object 5

4 / 45Towards Fairer Collective Decisions
▲



Introduction

Fair division of indivisible goods

Problem #2: Discrete fair division

We have to allocate a set of m indivisible items to n agents having
different evaluations of these objects.

Agent 1 Agent 2 Agent 3 Agent 4

Object 1 Object 2 Object 3 Object 4 Object 5

4 / 45Towards Fairer Collective Decisions
▲



Introduction

Fair division of indivisible goods

Problem #2: Discrete fair division

We have to allocate a set of m indivisible items to n agents having
different evaluations of these objects.

Alternatives: possible allocations (nm)

Agents: objects consumers (n)

Preferences: utility functions / orders...

Applications: dividing inheritance, allocating lab works to students,
papers to reviewers, tasks to robots or machines, tasks in crowdsourcing
systems,...
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progressbar theme Introduction

Objectives of the talk

A central topic in these problems: fairness...

How can fairness be formally defined, and how does the use of different
fairness notions impact the collective decision and its computation in
practice?

In this talk:

Some of the topics I have been working on mostly between 2011 and 2019

All these topics belong to the domain of Computational Social Choice
(COMSOC) ≈ Social Choice Theory ∩ Computer Science
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progressbar theme Introduction

Outline

1. Fair enough: fairness beyond proportionality and envy-freeness

2. The unreasonable fairness of picking sequences

3. And the winner is... Alternative (fairer?) voting rules
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Fair divison

Fair enough: fairness beyond proportionality and envy-freeness



progressbar themeFair enough: fairness beyond proportionality and envy-freeness

The fair division problem

You have:

a finite set of objects O = {o1, . . . , om}
a finite set of agents A = {a1, . . . , an} having some preferences on the set
of objects they may receive

You want:
an allocation −→π : A → 2O, such that

πi ∩ πj = ∅ if i ̸= j (preemption),⋃
a∈A πi = O (no free-disposal),

and which takes into account the agents preferences

Agents preferences...

1. How to express them formally?
2. How to take them into account to compute an allocation?
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Additive fair division

1. Preferences – a standard model: additive preferences

Ask each agent ai to give a score wi (o) to each object o

If ai receives bundle π, she derives utility ui (π) =
∑

o∈π
wi (o)

Additive preferences: good compromise between simplicity and expressive
power (other models exist: linear orders, k-additive preferences...)

2. Computing an allocation – two standard approaches:

1. Find an allocation −→π that maximizes a collective utility function, e.g.
uc(−→π ) = minai ∈A ui (πi ) – egalitarian solution

2. Find an allocation −→π that satisfies a given fairness criterion

In this part, we focus on the 2nd approach and investigate how fairness
can be formally modeled
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progressbar themeFair enough: fairness beyond proportionality and envy-freeness

Two standard criteria

Envy-freeness (EF) [Foley, 1967]
An allocation −→π is envy-free if no agent envies another one, that is,
∀ai , aj , ui(πi) ≥ ui(πj).

Proportional share (PROP) [Steinhaus, 1948]
An allocation −→π satisfies proportionality if every agent gets at least 1/nth

of the total value of the objects, that is, ∀ai , ui(πi) ≥ ui(O)/n.

Known facts:
−→π is EF ⇒ −→π satisfies PROP
An envy-free (resp. proportional) allocation may not exist
Deciding whether an allocation is EF (resp. PROP) is polynomial
Deciding whether an instance has an EF (resp. PROP) allocation is
NP-complete [Lipton et al., 2004]
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Beyond EF and proportionality

Envy-free or proportional allocations are nice, but...

(...they can be hard to compute)

...they do not always exist (what can we do if there are none?)

...there can be potentially many of them (how to choose between them?)

Can we enrich the landscape of fairness properties to overcome these
problems?
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Max-min share

Let us start with proportionality... A nice property, but sometimes too
demanding for indivisible goods.

Example

2 agents, 5 objects, with wi(oi) = 1 for all ai and oj .

Idea [Budish, 2011]: run a "I cut, you choose" game...

divisible (cake-cutting) setting: the agent obtains a proportional share

indivisible setting: yields a weaker guarantee, max-min share

Max-min share (MmS)

An allocation −→π satisfies max-min share if
∀ai , ui(πi) ≥ max−→π minaj ∈A ui(πj).
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Max-min share: known facts

−→π satisfies PROP ⇒ −→π satisfies MmS [B. and Lemaître, AAMAS’14]

Conjecture [B. and Lemaître, AAMAS’14]: a max-min share allocation
always exists (proved for special cases, no counterexample found on
thousands of random instances)

Actually proved to be wrong with a very tricky counterexample
[Procaccia and Wang, 2014]
Since then...

A lot of follow-up works on this question
Complexity of deciding whether there exists a max-min share allocation:
still open
The best approximation factor so far is 3

4 + 3
3836 [Akrami and Garg, 2024]

In practice, a MmS allocation exists with very high probability
[Kurokawa et al., 2016, Amanatidis et al., 2017]
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Min-max share

Max-min share: “I cut, you choose (I choose last)”

Idea [B. and Lemaître, AAMAS’14]: why not do the opposite (“Someone
cuts, I choose first”) ?

→ Min-max share

Min-max share (mMs)

An allocation −→π satisfies min-max share if
∀ai , ui(πi) ≥ min−→π maxaj ∈A ui(πj).

Interestingly,
−→π satisfies mMS ⇒ −→π satisfies PROP
−→π is EF ⇒ −→π satisfies mMS
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CEEI

Competitive Equilibrium from Equal Incomes (CEEI):

Standard notion in economics, subcase of the Fisher model

Introduced recently in computer science
Idea:

Endow each agent with the same amount of money
Fix a price to each item
Let the agents buy whatever they want
If the market clears, the allocation is fair and efficient

Deciding whether there exists a CEEI is NP-hard [Brânzei et al., 2015] but
we can compute one (if there is one) using linear programming [B. and
Lemaître, COMSOC’16]
−→π is a CEEI ⇒ −→π is EF
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A scale of criteria

Let us wrap things up...

−→π is a CEEI ⇒ −→π is EF
−→π is EF ⇒ −→π satisfies mMS
−→π satisfies mMS ⇒ −→π satisfies PROP
−→π satisfies PROP ⇒ −→π satisfies MmS

MmS almost always satisfiable
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−→π satisfies mMS ⇒ −→π satisfies PROP
−→π satisfies PROP ⇒ −→π satisfies MmS

MmS almost always satisfiable MmS

PROP

mMS

EF

CEEI

Our approach to fairness [B. and Lemaître, JAAMAS’15]:
1. Determine the highest satisfiable criterion

2. Find an allocation that satisfies this criterion

3. Explain to the upset agents that we cannot do much better
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Relaxing envy-freeness

Our scale of fairness is made of properties conveying different rationales
(and rather unexpectedly related to form a scale)

Another approach is possible...

...start with envy-freeness,

then propose a relaxation that can be more easily satisfied

A standard relaxation: measure of envy [Lipton et al., 2004]

Pairwise envy: pe(ai , aj ,
−→π ) = max{0, ui (πj) − ui (πi )}

Individual envy: e(ai ,
−→π ) = maxaj ∈A(pe(ai , aj ,

−→π ))

Collective envy:

sum of individual envies [Lipton et al., 2004]
a balanced approach, like OWA [Shams, Beynier, B. and Maudet, ADT’21]
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Envy-free up to one good

Rationale behind the measure of envy: if an EF allocation does not exist,
agents should be ready to accept a small amount of envy

Same idea behind envy-free up to one good (EF1) [Budish, 2011]: ai

envies aj? Is it still the case if we remove one (the highest ranked) item
from πj?
Obviously, (−→π ⊨ EF) ⇒ (−→π ⊨ EF1)
An EF1 allocation always exists (and easy to compute)

A variation of EF1, envy-free up to any good (EFX)
[Caragiannis et al., 2016]: ai envies aj? Is it still the case if we remove any
item from πj?
Obviously, (−→π ⊨ EF) ⇒ (−→π ⊨ EFX) ⇒ (−→π ⊨ EF1)
Complexity of deciding whether there exists an EFX allocation:
still open
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Landscape, completed
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Epistemic envy

Another relaxation of EF...

EF assumes that the agents have full knowledge of the other shares
In practice, this is unrealistic
If we assume that they only know their own share → epistemic
envy-freeness [Aziz, B., Caragiannis, Giagkousi and Lang, AAAI’18]

Epistemic envy-freeness (EEF)

An agent ai is EEF in −→π if there is an alternative allocation −→π ′ such that
π′

i = πi and ai is EF in π′.

(−→π ⊨ EF ) ⇒ (−→π ⊨ EEF ) ⇒ (−→π ⊨ mMS)
Extended recently to EEFX [Caragiannis et al., 2023] and related concepts
Intermediate concept: the agents know some agents, via a social graph G
→ G-EEF
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Envy approved by the society

Epistemic envy-freeness: envy is a knowledge-sensitive notion

Another approach: envy as a subjective notion
Suppose ai envies aj but noone agrees with ai : ai ’s envy towards aj is
socially unsupported [Parijs, 1997]
If only some agents support this envy → K -approval envy [Shams, Beynier,
B. and Maudet, JAIR’22]

K -approval envy (K -app envy)

ai K -app envies aj if ∃ a subset AK of K agents including ai such that
∀ak ∈ AK , uk(πi) < uk(πj)

−→π is (K -app envy)-free ⇒ −→π is ((K + 1)-app envy)-free
Finding the minimum K so that −→π is (K -app envy)-free is NP-complete
We can extend this concept to K -app non-proportionality
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Fair division

The unreasonable fairness of picking sequences



The unreasonable fairness of picking sequences

How to compute a fair division...

1. So far, what we have done: (i) ask the agents to give their preferences,
then (ii) use a (centralized) collective decision making procedure.

2. Start from a random allocation and ask the agents to negotiate.
3. Use an interactive protocol like picking sequences.
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How to compute a fair division...

1. So far, what we have done: (i) ask the agents to give their preferences,
then (ii) use a (centralized) collective decision making procedure.

2. Start from a random allocation and ask the agents to negotiate.
3. Use an interactive protocol like picking sequences.

In this part, we will focus on picking sequences (but also talk a little bit
about negotiation)
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Picking sequences

Picking sequences are...

natural and simple

used in practice (board games, draft mechanisms, course allocation...)

preference elicitation-free

Is this protocol compatible with fairness requirements?

It depends... For instance, we "feel" that ABCCBA is fairer than AABBCC

Question

What is the fairest sequence?
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progressbar themeThe unreasonable fairness of picking sequences

The formal model

More precisely...

We have: A set A of n agents (A, B, C , ...) and a set O of m objects
We want: a fair policy (a sequence of agents) σ : {1, . . . , m} → A

Fair policy? We don’t know the agents’ preferences...

Our proposal [B. and Lang, IJCAI’11]: find a policy maximizing
expected social welfare given some assumptions on the preferences:

1. each agent ai has a (private) ranking ≻i over A drawn from a prior
probability distribution Ψ (Full Independence (FI) or full correlation (FC))

2. ...rankings are lifted to utilities using a scoring function g , e.g Borda,
lexicographic, quasi-indifference (QI)

3. ...individual utilities are aggregated to collective utilities using a social
welfare function sw , e.g egalitarian (min) or utilitarian (sum)
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Results

Full correlation:
Utilitarian: trivial (every sequence is optimal)
Egalitarian: NP-complete (actually pseudo-polynomial), but very easy for QI

Full independence:
Utilitarian + Borda: the alternating sequence (ABABABAB...) is optimal
[Kalinowski et al., 2013]
Other cases: still open
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About manipulation...

Some (annoying?) feature...

Example

2 agents (A, B), 4 objects:
A: o1 ≻ o2 ≻ o3 ≻ o4

B: o2 ≻ o3 ≻ o4 ≻ o1

Sequence σ = ABBA → {o1o4|o2o3}.

What if A knows B’s preferences and acts maliciously?

She can manipulate by picking o2 instead of o1 at first step →
{o1o2|o3o4}.
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About manipulation...

Picking sequences are manipulable... How to prevent this?

Two approaches:

1. Computational barriers to manipulation...

General manipulation: polynomial for 2 agents [B. and Lang, ECAI’14] but
NP-complete for ≥ 3 agents [Aziz, B., Lang and Mackenzie, AAAI’17]
Coalitional manipulation: NP-complete in general [B. and Lang, ECAI’14]

2. Strategyproof picking sequences...
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Of strategyproof sequences

(Folk?) theorem

The only strategyproof picking sequences are those made of contiguous
blocks of agents (e.g. A...AB...BC ...C).

At first sight, non-interleaving sequences seem hardly compatible with
fairness...

Is there a way to reconcile strategyproofness and fairness?

For instance, for 3 agents, 10 objects, we "feel" that: AABBBCCCCC is
fairer than AAAAABBBCC

→ We can compensate late arrival by higher number of goods picked.
Question

What is the fairest sequence?
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Results

Good news [B., Gilbert, Lang and Méroué, arXiV’23]...

Proposition

For FI, FC, any sw ∈ {ut, eg , Na} and any g , we can find an optimal
sequence in time O(m2 max(n, m)) (dynamic programming)
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Proposition

For FI, FC, any sw ∈ {ut, eg , Na} and any g , we can find an optimal
sequence in time O(m2 max(n, m)) (dynamic programming)

Examples (Full independance, egalitarian CUF, Borda):
n m sw = eg sw = ut
3 35 (9, 10, 16) (13, 11, 11)
5 70 (12, 12, 12, 13, 21) (18, 16, 14, 11, 11)
8 20 (2, 2, 2, 2, 2, 3, 3, 4) (3, 3, 3, 3, 2, 2, 2, 2)
8 100 (11, 11, 11, 11, 11, 12, 13, 20) (18, 16, 15, 13, 12, 10, 8, 8)
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Results

Good news [B., Gilbert, Lang and Méroué, arXiV’23]...

Proposition

For FI, FC, any sw ∈ {ut, eg , Na} and any g , we can find an optimal
sequence in time O(m2 max(n, m)) (dynamic programming)

Discussion:
Interest beyond picking sequences: under mild conditions, the only
deterministic strategyproof mechanisms are within the family of serial
dictatorships [Pápai, 2000, Pápai, 2001]

Non-interleaving picking sequences ≈ a way to reconcile strategyproofness,
(ex-ante) fairness, and (a form of) efficiency
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Sequenceability as efficiency

Speaking of efficiency...

Usual way to characterize efficiency: Pareto-efficiency

Allocations obtained by picking sequences have a (weak) form of efficiency,
that we call sequenceability
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Sequenceability as efficiency

Speaking of efficiency...

Usual way to characterize efficiency: Pareto-efficiency

Allocations obtained by picking sequences have a (weak) form of efficiency,
that we call sequenceability

Proposition [B. and Lemaître, COMSOC’16]
−→π is Pareto-efficient ⇒ −→π is sequenceable

Incidentally, we also have:
−→π is CEEI ̸⇒ −→π is Pareto-efficient
−→π is CEEI ⇒ −→π is sequenceable
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The unreasonable fairness of picking sequences

Swap deals vs sequences

Remember the third method to allocate indivisible goods? Negotiation...

Start from an initial allocation

Let the agents negotiate (that is... trade bundles)
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Trading cycles

(N, M)-cycle deal:
N: cycle length

M: max number of objects involved in each trade

(in the example before, N = 4 and M = 1)

35 / 45Towards Fairer Collective Decisions
▲



progressbar themeThe unreasonable fairness of picking sequences

Trading cycles
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N: cycle length

M: max number of objects involved in each trade

(in the example before, N = 4 and M = 1)

Proposition
−→π (n, 1)-cycle optimal ⇔ −→π sequenceable. [Beynier,
B., Lemaître, Maudet, Rey and Shams, AAMAS’19]
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The full landscape of fairness
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Voting

And the winner is... Alternative (fairer?) voting rules
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From theory to experiments...

So far, we have designed (supposedly) fair collective decision making
procedures and studied their theoretical properties

If we want to test how they behave in practice...

1. ...run lab experiments (with real humans)
2. ...run real-world experiments (with real humans as well)
3. ...run computer simulations (if possible, applied to real-world data)

In this part, we will focus on voting in the context of political elections
Experimenting alternative voting rules for the French presidential election
Simulating alternative voting rules for the French legislative election
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Experimental setting

An experiment run during the 2017 presidential election

Involving 10 researchers in France (economics + CS) and dozens of
volunteers
Online + in situ (5 places in France)
37739 participants online + 6358 in situ (incl. 1080 in Grenoble)

In France, the president is elected using plurality with runoff
Many other rules exist (some of them known by SC theorists for centuries!)

Main question

How does the use of an alternative voting rule change the result of the
election?

Other similar experiments
[Baujard et al., 2014, Darmann et al., 2017, Darmann and Klamler, 2023]
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More concretely...
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More concretely...

Expérimentation scientifique : Élections présidentielles 2017

Bulletin numéro 1

Un président va être élu. Pour chacun des 11 candidats, mettez une croix
dans la colonne « Je soutiens » si vous le/la soutenez comme président.

Vous pouvez soutenir autant de candidats que vous voulez.

Le candidat ayant le plus de soutiens gagne l’élection.

Je soutiens

M. Nicolas DUPONT-AIGNAN

Mme Marine LE PEN

M. Emmanuel MACRON

M. Benoît HAMON

Mme Nathalie ARTHAUD

M. Philippe POUTOU

M. Jacques CHEMINADE

M. Jean LASSALLE

M. Jean-Luc MÉLENCHON

M. François ASSELINEAU

M. François FILLON

Expérimentation scientifique : Élections présidentielles 2017

Bulletin numéro 2

Evaluez chaque candidat en plaçant une marque sur l’échelle correspon-
dante. Par exemple, si vous êtes plutôt contre A et très favorable à B, vous
pouvez noter de la manière suivante :

Candidat A

Candidat B

Plus votre marque est proche de « pour », plus le candidat a une bonne
note. Si vous ne dites rien pour un candidat, c’est comme si vous étiez contre.
Le candidat ayant la somme des notes la plus élevée est élu.

M. Nicolas DUPONT-AIGNAN

Mme Marine LE PEN

M. Emmanuel MACRON

M. Benoît HAMON

Mme Nathalie ARTHAUD

M. Philippe POUTOU

M. Jacques CHEMINADE

M. Jean LASSALLE

M. Jean-Luc MÉLENCHON

M. François ASSELINEAU

M. François FILLON

contre indifférent pour
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And the winner is... Alternative (fairer?) voting rules

Results
Online experiment (corrected results)
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And the winner is... Alternative (fairer?) voting rules

Results
In-situ experiment, in Grenoble (corrected results)
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And the winner is... Alternative (fairer?) voting rules

Results: discussion

The results vary with the rules

Very biased population sample! → hard to unbias

Several families of voting rules (official+IRV / Borda / AV+EV)

Several kinds of candidates: polarizing, consensual, "small"
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Conclusion and perspectives

A fair and safe operating space for humanity...
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Thank you

Want to know more?

http://recherche.noiraudes.net/en/hdr.php

Pictures borrowed from: https://drawthesimpsons.tumblr.com/
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