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Abstract

In the context of fair allocation of indivisible items, fairness
concepts often compare the satisfaction of an agent to the sat-
isfaction she would have from items that are not allocated to
her: in particular, envy-freeness requires that no agent prefers
the share of someone else to her own share. We argue that
these notions could also be defined relative to the knowl-
edge that an agent has on how the items that she does not
receive are distributed among other agents. We define a fam-
ily of epistemic notions of envy-freeness, parameterized by a
social graph, where an agent observes the share of her neigh-
bours but not of her non-neighbours. We also define an in-
termediate notion between envy-freeness and proportionality,
also parameterized by a social graph. These weaker notions of
envy-freeness are useful when seeking a fair allocation, since
envy-freeness is often too strong. We position these notions
with respect to known ones, thus revealing new rich hierar-
chies of fairness concepts. Finally, we present a very general
framework that covers all the existing and many new fairness
concepts.

1 Introduction
Envy-freeness is one of the most important fairness require-
ments in the classical resource allocation problem of dis-
tributing indivisible items among agents who have cardi-
nal valuations over these items (Bouveret, Chevaleyre, and
Maudet 2016; Chevaleyre et al. 2006). However, it is quite
strong and not achievable in many resource allocation in-
stances. Hence, several authors have studied a series of
weaker notions, such as proportionality (which dates back
to Steinhaus (1948)), maxmin (Budish 2011) and minmax
fair share (Bouveret and Lemaı̂tre 2016). Which fairness
notion is the most appropriate for resource allocation? A
compelling objective would be to find an allocation for the
strongest fairness concept possible. An “optimal” solution
to this problem would then require to have relaxations of
envy-freeness of varying strength available. In this paper we
define and study several such families of relaxations. We in-
troduce the first one by an example.

Ann, Bob and Chloe are PC members in the International
Conference on Everything and are about to “bid” for papers
to review. Four papers p1, . . . , p4 have been submitted. Ann
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and Bob both value each of these papers as 10, 6, 6 and 1, re-
spectively. Chloe values them 1, 6, 6, and 10. All three have
additive preferences. Each paper must be reviewed by ex-
actly one reviewer. Ideally, one would like to assign papers
to reviewers so that none of them would prefer the share of
someone else to her own share; this is known as an envy-
free allocation. It is easy to see that no such allocation exists
here: since Ann and Bob have identical preferences, they are
non-envious of each other only if they draw the same value
from their assignments: the only ways to achieve this is to
assign p2 to one of them and p3 to the other, or no paper to
any of them; in any case, they will both envy Chloe.

However, this line of reasoning implicitly assumes that
each agent knows how the items are allocated. This is not
necessarily the case in such a context. If each of the three
agents ignores to whom the papers that they do not get are
assigned, we can assign the papers in such a way that every-
one considers it possible that they do not envy anyone else:
assign p1 to Ann, p2 and p3 to Bob and p4 to Chloe. Ann,
who does not know how p2, p3, and p4 are assigned, con-
siders it possible that one of Bob and Chloe gets p2 and the
other one gets both p3 and p4, in which case she does not
envy anyone; such a line of reasoning also applies to Bob
and to Chloe. Although this allocation is not envy-free, it is
epistemically envy-free.1

While classical envy-freeness is based on the assumption
that the knowledge of the allocation among the agents is
maximal (everyone knows which items every other agent
gets), epistemic envy-freeness implicitly assumes that this
knowledge is minimal and each agent knows only which of
the items have been allocated to her. We introduce interme-
diate notions where an agent knows the bundles of items that
a specific subset of agents get. For instance, an agent may
have knowledge only of the bundles of items allocated to
her and her acquaintances (or neighbors) in a social network.
Still, she may reason about the possible allocations of the re-
maining items to the agents she is not connected to. We will
consider such notions of epistemic fairness which involve
social graphs (to model social acquaintances); clearly, the
denser the graph, the stronger the notion.

1This does not mean that every agent considers it possible that
the allocation is envy-free. For this, each agent should have addi-
tional knowledge of the others’ preference.



As a fairness concept, envy-freeness is knowledge-
sensitive. It explicitly compares an agent’s bundle of items
to the bundles of other agents. In contrast, proportionality,
which requires that the value of each agent for the items in
her bundle is at least as high as her total value for all items
divided by the number of agents, is not knowledge-sensitive
in this sense. An agent can tell whether her bundle is propor-
tional or not without knowing how the items she did not get
are allocated. Still, social graphs can be used to define a fam-
ily of notions that are intermediate between envy-freeness
and proportionality. Our related fairness notion requires that
each agent is non-envious of all her neighbours and gets a
proportional share compared to her non-neighbours.

As another conceptual contribution, we propose an ab-
stract framework that can be used to define novel fairness
notions from very basic ones. All notions of epistemic fair-
ness that we present (and many more) can be obtained as part
of this framework. On the technical level, our main objective
is to relate the new fairness notions to well-known ones in
terms of strength. Our results indicate that epistemic envy-
freeness is weaker than envy-freeness but stronger than min-
max fair share. Our extensions of epistemic envy-freeness
using social graphs define a very rich hierarchy of fairness
concepts that “occupy the space” between epistemic envy-
freeness and envy-freeness. A similar hierarchy is obtained
when combining envy-freeness, proportionality, and social
graphs; these fairness concepts lie between proportionality
and envy-freeness.

The rest of the paper is structured as follows. We conclude
this section with a presentation and discussion of related
work. The exposition of our technical results begins with
notation and background definitions in Section 2. In Section
3, we define epistemic envy-freeness and relate it to other
known fairness notions. The definition of epistemic envy-
freeness concepts that involve social graphs and the results
establishing their hierarchy are presented in Section 4. Sec-
tion 5 is devoted to our novel fairness concept that combines
proportionality, envy-freeness, and social graphs. In Section
6 we present our abstract framework and demonstrate how
the several well-known and new fairness concepts can be ob-
tained. We conclude in Section 7 with directions for future
research.
Related work. As envy-freeness is not always achievable,
several relaxations of it have been studied in the literature.
These include the fairness concepts of envy-freeness up to
some item (EF1) and up to any single item (EFX) (Cara-
giannis et al. 2016; Lipton et al. 2004; Plaut and Rough-
garden 2017, for instance). The distance from envy-freeness
(quantified as the envy ratio or degree of envy) has also
been used as an objective to minimize (Lipton et al. 2004;
Nguyen and Rothe 2014).

Chen and Shah (2017) revisit envy-freeness by assuming
that allocations are not public knowledge (to the agents).
At first glance, this seems to be conceptually related to our
notions of epistemic fairness. Both the goal and the tech-
nical content in the two papers are very different, though.
Instead of defining a relaxation of envy-freeness, the main
goal of Chen and Shah (2017) is to study the implications of
hiding information from the agents (this might be desirable

for other reasons; e.g., for privacy) on the way they quan-
tify envy. In their setting, each agent has a prior distribution
about how the other agents value the items, which she can
use to infer information about their bundles and to compute
her expected value for them. The definition of our epistemic
envy-freeness (and its variants) does not use any such prior.

Several publications make connection of fair allocations
to some kind of graph or network. For instance, some papers
(Abebe, Kleinberg, and Parkes 2017; Bei, Qiao, and Zhang
2017; Chevaleyre, Endriss, and Maudet 2017) assume an
underlying social network over the agents and define envy-
freeness or proportionality constraints for each agent in re-
lation to her neighbors only. Unlike in our fairness concepts,
the items that are allocated to non-neighbors are completely
ignored in this way.

In very recent work, the resource allocation instance is
augmented by a graph representing structure among the
items. The goal is to identify allocations in which the set
of resources allocated to each agent is connected (Bouveret
et al. 2017). This is a natural extension of the requirement
for contiguous allocations in the cake-cutting model. See the
books (Brams and Taylor 1996; Robertson and Webb 1998)
for a more detailed coverage of cake-cutting and the paper
of Procaccia (2016) for a recent short survey.

2 Definitions and Notation
We consider resource allocation instances that consist of n
agents and a set M of items. We identify the agents by posi-
tive integers and denote their set by [n] = {1, 2, ..., n}.

An allocation of the items in M to the agents of [n] is a
partition of M into n sets, e.g., A = (A1, A2, ..., An) with
M =

⋃
i∈[n] Ai and Ai ∩Aj = ∅ for i 6= j. We will refer to

the set Ai as the set (or bundle) of items allocated to agent i.
Each agent i has a non-negative valuation function vi :

M → R≥0 defined over the items. Then, with some abuse
of notation, the value of agent i for a set of items S ⊆ M is
vi(S) =

∑
g∈S vi(g). Let us now recall some well-known

notions of fairness for allocations. We begin with envy-
freeness and proportionality.

Definition 1. Consider a resource allocation instance with
n agents and a set of items M . An allocation A =
(A1, ..., An) satisfies

• proportionality if vi(Ai) ≥ 1
nvi(M) for every i ∈ [n],

and
• envy-freeness if vi(Ai) ≥ vi(Aj) for every i, j ∈ [n].

Alternatively, we will say that the allocation A is propor-
tional (PROP) and envy-free (EF), respectively. We will use
the same abbreviations PROP and EF to refer to proportion-
ality and envy-freeness. We will also refer to the quantity
1
nvi(M) as the proportionality threshold of agent i.

These two fairness notions have received enormous atten-
tion in the fair division literature. It is not hard to see (e.g.,
consider two agents and a single item) that there are resource
allocation instances which do not have any PROP or EF al-
location. It is also well-known that EF implies PROP in the
sense that an EF allocation is also PROP. This implication is
strict in the sense that, not only are there PROP allocations



that are not EF but that, more importantly, there are resource
allocation instances which have some PROP allocation but
no EF allocation.

Bouveret and Lemaı̂tre (2016) considered more fairness
concepts and expanded the list of implications. We will use
two of them here.

Definition 2. Consider a resource allocation instance with
n agents and a set of items M and let F denote the set of all
allocations.

• The min-max fair share of agent i is defined as

umFS
i (M,n) = min

Ai∈F
max
j∈[n]

vi(A
i
j).

An allocation A = (A1, ..., An) satisfies the min-max
fair share criterion (or, simply, is mFS) if vi(Ai) ≥
umFS
i (M,n) for every i ∈ [n], .

• The max-min fair share of agent i is defined as

uMFS
i (M,n) = max

Ai∈F
min
j∈[n]

vi(A
i
j).

An allocation A = (A1, ..., An) satisfies the max-min
fair share criterion (or, simply, is MFS) if vi(Ai) ≥
uMFS
i (M,n) for every i ∈ [n].

Again, the abbreviations mFS and MFS will be used to
refer to the corresponding fairness concepts as well. Like
PROP, both mFS and MFS define a threshold for each agent
that depends on her valuation function and the number of
agents and require that her value for the bundle of items the
agent receives is at least as high as her threshold.

EF is the strongest among the four fairness concepts
above. It implies mFS, which implies PROP, which in turn
implies MFS. These implications are rather easy to prove;
what is considerable trickier to show is that these impli-
cations are strict. For example, mFS does not imply EF as
there are resource allocation instances with an mFS alloca-
tion but with no EF allocation. See the paper of Bouveret and
Lemaı̂tre (2016) for nice counterexamples showing that the
above implications are all strict. Interestingly, there are re-
source allocation instances that are not MFS (Procaccia and
Wang 2014).

In this way, a five-level hierarchy of fairness concepts
is defined, having EF instances on the top2 level, mFS in-
stances on the second level, and so on, while all instances
are in the bottom level. In the following sections, we define
several new fairness notions which, as we show, occupy in-
termediate levels in this hierarchy.

3 Epistemic Envy-Freeness
In the definition of PROP, mFS, and MFS, the constraints
for agent i (i.e., the inequalities involving the value vi(Ai)
of agent i for her bundle) in an allocation A depend only
on the number n of agents, the bundle Ai that is allocated

2Even though EF is the strongest fairness notion we consider
here, there are even stronger ones in the literature, such as the
well-known competitive equilibrium from equal incomes (CEEI)
from microeconomics. CEEI implies EF and this implication is
strict (Bouveret and Lemaı̂tre 2016).

to agent i, and her valuation function over the items in M .
In contrast, the EF constraints for agent i depend on the
whole allocation vector, including the bundles of items that
the other agents get in A. The fairness notion of epistemic
envy-freeness (EEF) aims to relax EF by mitigating this de-
pendence.

Definition 3. Consider a resource allocation instance with
n agents and a set of items M . An allocation A =
(A1, ..., An) satisfies epistemic envy-freeness (or, simply,
is EEF) if for every i ∈ [n], there exists an allocation
Ai = (Ai

1, ..., A
i
n) such that Ai = Ai

i and vi(Ai) ≥ vi(A
i
j)

for all j ∈ [n].

In other words, an allocation is EEF if, for every agent i,
the items that are not allocated to her can be re-allocated to
the other agents so that agent i does not envy anyone after
the re-allocation. Let us warm up by proving simple impli-
cations that involve EEF.

Theorem 4. EF implies EEF which implies mFS.

Proof. By definition, an EF allocation A is also EEF (us-
ing Ai = A for every i ∈ [n]). We now show that an
EEF allocation is also mFS, thus proving the second im-
plication. Consider an EEF allocation A in an n-agent re-
source allocation instance with a set of items M . We will
show that the value of every agent i for her bundle is at
least her min-max fair share, i.e., vi(Ai) ≥ umFS

i (M,n).
Since A is EEF, there exists an allocation Ai such that
vi(Ai) ≥ maxj∈[n] vi(A

i
j). The proof follows by observing

(see Definition 2) that the RHS of this inequality is lower-
bounded by umFS

i (M,n).

The relation of EEF to known fairness concepts is sum-
marized in Figure 1.

EF =⇒ EEF =⇒ mFS =⇒ PROP =⇒ MFS

Figure 1: Relations of fairness concepts.

Next, in Theorems 5 and 6, we show that both implica-
tions are strict. We do so using instances with three agents
since EF, EEF, mFS, and PROP are all equivalent for n = 2.
The instance in the proof of the next statement was also used
by Bouveret and Lemaı̂tre (2016) to prove that mFS does not
always imply EF.

Theorem 5. There exist resource allocation instances with
an EEF allocation but with no EF allocation.

Proof. Consider the instance with four items A, B, C, D
and three agents with the valuations that are shown in the
next table:

agent A B C D
1 10 6 6 1
2 10 6 6 1
3 1 6 6 10

The allocation in which agent 1 gets item A, agent 2 gets
items B and C, and agent 3 gets item D is EEF. Indeed, from



the point of view of agent 1 who gets item A, there is the re-
allocation in which agent 2 gets item B and agent 3 gets
items C and D so that agent 1 does not envy the two other
bundles. Agent 2 is not envious of the other agents in the
current allocation anyway. Agent 3, who gets item D, is not
envious after re-allocating items A and B to agent 1 and item
C to agent 2. On the other hand, as observed by Bouveret
and Lemaı̂tre (2016), there is no EF allocation.

The EEF allocation in the above proof is mFS. So, in order
to show that EEF is strictly stronger than mFS (i.e., that mFS
does not always imply EEF), we will use a more complicated
instance3 and, correspondingly, more involved arguments.

Theorem 6. There exist resource allocation instances with
an mFS allocation but with no EEF allocation.

Proof. Consider the instance with six items A, B, C, D, E,
F and three agents with the valuations that are shown in the
next table:

agent A B C D E F
1 9 9 9 16 15 15
2 8 8 8 20 13 13
3 8 8 8 24 12 12

The min-max fair shares are 25 for agent 1, 26 for agent 2,
and 24 for agent 3. To see why, observe that the total
value of agents 1 and 3 for all items is 73 and 72, re-
spectively. Then, the minimum possible value of 25 for the
min-max fair share of agent 1 is obtained by the allocation
({A,D}, {B,E}, {C,F}). Similarly, the minimum possi-
ble value of 24 for the min-max fair share of agent 3 is ob-
tained by the allocation ({A,B,C}, {D}, {E,F}). Agent
2 has maximum value 26 for the bundles of the allocation
({A,B,C}, {D}, {E,F}); it is easy to see that this is the
“most balanced” allocation that defines her min-max fair
share.

Now, an mFS allocation is as follows: agent 1 gets items
A, B, C which she values for 27, agent 2 gets items E, F of
value 26, and agent 3 gets item D of value 24.

We now show that there is no EEF allocation. First ob-
serve that if agent 1 (similarly, for agent 2) does not get any
of the items D, E, and F , then, in any re-allocation, she will
be envious of the agent who gets at least two items among
them. So, in an EEF allocation (if any), each of the agents 1
and 2 should receive at least one item among D, E, and F .
From now on, our argument will be that there is no such allo-
cation in which each agent gets her proportionality threshold
(i.e., 25, 24, and 24, respectively). Since EEF implies PROP,
in this way we will have shown that no EEF allocation exists
either, completing the proof of Theorem 6.

3We remark that, even though the three agents have the same
total value of 23 for all items in the instance used in the proof of
Theorem 5, this is not a requirement of our model. Some of the
constructions in the following have this feature (i.e., the ones in the
proofs of Theorems 9 and 12) while others (i.e., in the proofs of
Theorems 6, 14, and 15) do not.

First assume that all items D, E, and F are allocated to
agents 1 and 2. Then, the items A, B, and C should be all al-
located to agent 3 (in order to get her proportionality thresh-
old) which will leave some of agents 1 and 2 with a value
that is below her proportionality threshold.

It remains to consider the case in which each of agents 1
and 2 get exactly one among items D, E, and F . In order
to get the proportionality threshold, an agent (among agents
1 and 2) needs one extra item from A, B, C if item D is
allocated to her and two extra items from A, B, and C oth-
erwise. We conclude that D should be allocated to some of
the agents 1 and 2 and agent 3 is left with only only item
among E and F ; this is not enough and gives her a value (of
only 12) that is below her proportionality threshold.

4 A New Fairness Concept with Social
Constraints

EF and EEF stand in the two extremes of the possible aware-
ness levels of the agents. EEF assumes that each agent is
ignorant of how the items that she does not receive are allo-
cated to the other agents, while EF assumes that all agents
have full knowledge of all bundles. In this section, we de-
fine a new fairness notion by modeling intermediate aware-
ness levels for each agent. Besides her bundle, an agent is
allowed to have full knowledge for the bundles of some par-
ticular agents only.

We model such social constraints with a directed graph
called the social graph. Each node of a social graph corre-
sponds to an agent and a directed edge (u, v) indicates that
agent u is always aware of the items allocated to agent v.
Given a social graph G, we use NeigG(u) and degG(u) to
denote the set of out-neighbors (or, simply, neighbors) and
the out-degree of node u in graph G, respectively.
Definition 7. Let G be an n-node social graph and consider
an n-agent resource allocation instance over a set of items
M . An allocation A = (A1, ..., An) is G-EEF if there exists
an allocation Ai = (Ai

1, ..., A
i
n) for every agent i ∈ [n] such

that Aj = Ai
j for every j ∈ {i} ∪ NeigG(i) and vi(Ai) ≥

vi(A
i
j) for every j ∈ [n].

Equivalently, the definition requires that vi(Ai) ≥ vi(Aj)
for every j ∈ NeigG(i) (i.e., agent i is not envious for her
neighbors in the original allocation) and vi(Ai) ≥ vi(A

i
j)

for every j 6∈ NeigG(i) (i.e., agent i is not envious of her
non-neighbors when the items are re-allocated).

Clearly, EEF is identical to G-EEF when G contains no
edges. Also, observe that the requirement imposed by G-
EEF is the same when a node has out-degree n− 2 or n− 1;
in both cases, G-EEF requires the corresponding agent to
be non-envious of the other agents. Hence, envy-freeness is
identical to G-EEF when every node of G has out-degree at
least n− 2.

We begin with a simple observation.
Theorem 8. Let G and H be social graphs over the same
set of nodes. If G is a subgraph of H , then H-EEF implies
G-EEF.

Proof. Consider an n agent resource allocation instance
with the set of items M . Let A be an H-EEF allocation



and Ai be the re-allocation of the items with Aj = Ai
j for

j ∈ {i} ∪NeigH(i) that satisfies vi(Ai) ≥ vi(A
i
j) for every

i, j ∈ [n]. Since G is a subgraph of H , the allocation Ai

satisfies Aj = Ai
j for j ∈ {i} ∪NeigG(i) as well. Hence, A

is G-EEF.

The next theorem states that for almost every other rela-
tion between social graphs H and G, H-EEF does not nec-
essarily imply G-EEF.

Theorem 9. Let G = ([n], E(G)) and H = ([n], E(H))
be n-node (with n ≥ 3) social graphs which have two nodes
u and v such that degH(u) ≤ n − 3 and edge (u, v) be-
longs to E(G) but not to E(H). Then, there exists an n-
agent resource allocation instance that has an H-EEF but
no G-EEF allocation.

Proof. We will prove the theorem using the following n-
agent instance. Since degH(u) ≤ n − 3, let w be a node
different than u and v such that the directed edge (u,w) does
not belong to E(H). There are n agents and n+1 items. The
valuation of agent u is 0, 3, 3, and 4 for the first four items
and 0 for the remaining ones.4 The valuation of agent v is
4, 3, 3, and 0 for the first four items and 0 for the remaining
ones. The valuation of agent w is 6, 2, 2, and 0 for the first
four items and 0 for the remaining ones. The valuation of
agent x ∈ [n] \ {u, v, w} (if any) is 0 for the first four items
and 10

n−3 for each of the remaining n− 3 items (if any). See
the next table:

agent 1 2 3 4 5 · · · n+ 1
u 0 3 3 4 · · ·
v 4 3 3 0 · 0 ·
w 6 2 2 0 · · ·
· · · · · · · ·
x · 0 · · · 10

n−3 ·
· · · · · · · ·

We first claim that any EEF allocation and, consequently
(by Theorem 8), any H-EEF or G-EEF allocation should at
least satisfy the following properties:

• agent u should get item 4,
• agent v should get items 2 and 3,
• agent w should get item 1, and
• each of the remaining n − 3 agents should get one of the

items 5, ..., n+ 1.

The fourth property is obvious since the remaining n − 3
agents have non-zero value for the n−3 items 5, ..., n+1. Let
us now argue about the necessity of the first three properties.
Observe that no allocation in which agent w does not get
item 1 is EEF, since the agent would then envy the agent
who gets the item in any re-allocation. Also, if agent v does
not get item 1 and gets only one of the items 2 and 3, she will
be envious for the agent that gets item 1 in any re-allocation.
So, in any EEF allocation, agent w should get item 1 and

4Even though the instances in the proofs of Theorems 9, 12, 14,
and 15 include zero valuations for some items, our arguments carry
over when replacing 0 by a very small but strictly positive value.

agent v gets both items 2 and 3. Then, agent u should get
item 4 (which is the only available item for which she has
non-zero value).

We now claim that such an allocation is not G-EEF. In-
deed, as G contains edge (u, v), the requirement that agent
u is not envious for the bundle allocated to agent v is not sat-
isfied. It remains to prove that such an allocation is H-EEF.
Clearly, no agent besides u is envious. For agent u, since the
edges (u, v) and (u,w) do not exist in H , it suffices to show
that there is a re-allocation of the items 1, 2, and 3 to agents
v and w so that agent u does not envy them: giving items
1 and 2 to agent w and item 3 to agent v yields the desired
re-allocation.

We remark that the restriction on the out-degree of node
u in H in the statement of Theorem 9 is necessary. For ex-
ample, consider graph H in which node u is connected to
every other node besides v and G is obtained by adding edge
(u, v) in H . Then, any allocation that is H-EEF is also G-
EEF since, in both cases, the requirement for agent u is to
be EF.

Now, observe that any pair of different n-node social
graphs in which all nodes have out-degree either exactly
n − 1 or at most n − 3 satisfy the condition of Theorem 9
(the requirement from an agent corresponding to a node of
out-degree n − 2 is essentially to be non-envious to every
other agent). Hence, any such graph defines a different fair-
ness concept. A careful counting of the different sets of ei-
ther n− 1 or at most n− 3 outgoing edges a node can have
yields that there are

(
2n−1 − n+ 1

)n
such social graphs.

Therefore, together, Theorems 8 and 9 establish a very rich
sub-hierarchy of fairness concepts between EF and EEF.

5 Relaxing Graph-EEF
We now introduce another fairness notion that includes so-
cial constraints and somehow lies between PROP and EF.

Definition 10. Let G be an n-node social graph and con-
sider an n-agent resource allocation instance over a set of
items M . An allocation A = (A1, ..., An) is G-PEF if, for
every agent i, vi(Ai) ≥ vi(Aj) for every j ∈ NeigG(i), and
vi(Ai) ≥ 1

n−1−degG(i) ·
∑

j 6∈Neig(G) vi(Aj).

That is, G-PEF requires each agent to be non-envious
for her neighbors and above the proportionality threshold
compared to her non-neighbors. So, G-PEF is in a sense
less demanding than G-EEF as its definition involves no re-
allocation of items. To further justify G-PEF, observe that
deciding whether a given allocation is G-PEF is an easy task;
in contrast, deciding whether a given allocation is G-EEF
can be easily seen to be computationally hard.

Clearly, G-PEF is identical to PROP if G contains no
edges and is identical to EF if each node of G has out-degree
either n − 2 or n − 1. We continue by showing that, given
a social graph G, G-EEF is (strictly) stronger than G-PEF.
We first show that G-EEF implies G-PEF.

Theorem 11. For every social graph G, G-EEF implies G-
PEF.



Proof. Let G be an n-node social graph and A =
(A1, ..., An) be a G-EEF allocation in an n-agent resource
allocation instance. Consider an agent i and let Ai be the
allocation with the property that Ai

j = Aj for j ∈ {i} ∪
NeigG(i) and vi(Ai) ≥ vi(A

i
j) for every agent j ∈ [n]. By

summing over all non-neighbors of agent i, we get

(n− 1− degG(i)) · vi(Ai) ≥
∑

j 6∈NeigG(i)

vi(A
i
j)

=
∑

j 6∈NeigG(i)

vi(Aj),

and, equivalently,

vi(Ai) ≥
1

n− 1− degG(i)

∑
j 6∈NeigG(i)

vi(Aj).

Furthermore, since Ai
j = Aj for every j ∈ {i} ∪ NeigG(i),

we also have that vi(Ai) ≥ vi(Aj) for every j ∈ NeigG(i).
This completes the proof.

Again, the implication is strict, unless all nodes of the so-
cial graph G have out-degree at least n − 2; in this case,
G-PEF and G-EEF would be equivalent to EF.

Theorem 12. Let n ≥ 3 and G = ([n], E(G)) an n-node
social graph that contains a node u of out-degree at most n−
3. Then, there exists an n-agent resource allocation instance
that has a G-PEF allocation but no G-EEF allocation.

Proof. We will prove the theorem using the following in-
stance. Since degG(u) ≤ n − 3, let v and w be two non-
neighbors of u. There are n items. The valuation of agents
u and v is 4, 0, and 6 for the first three items and 0 for the
remaining ones. The valuation of agent w is 10 for item 2
and 0 for any other item. Every other agent has valuation 0
for the first three items and 10

n−3 for each of the remaining
ones (if any). See the next table:

agent 1 2 3 4 · · · n
u 4 0 6 · · ·
v 4 0 6 · 0 ·
w 0 10 0 · · ·
· · · · · · ·
x · 0 · · 10

n−3 ·
· · · · · · ·

By allocating items 1, 2, and 3 to agents u, w, and v, re-
spectively, and having each of the remaining agents get one
item from 4 to n, we get a G-PEF allocation. Indeed, each
agent gets exactly one item and all agents besides u value
the item they get more than any other item. Since v and w
are not neighbors of u, u’s proportionality threshold with her
non-neighbors is (at most 10/3 and) below her value (of 4)
for the item she gets. Of course, she is not envious for her
neighbors since they get items of zero value for her.

However, in any allocation, the agent among u and v who
does not get item 3 will envy the agent who gets it. Hence,
there is no EEF and, consequently (by Theorem 8) there is
no G-EEF allocation.

Following the same roadmap with Section 4, we now es-
tablish (in Theorems 13 and 14) another rich sub-hierarchy
of fairness concepts, between EF and PROP this time.

Theorem 13. Let G and H be n-node social graphs over
the same set of nodes. If G is a subgraph of H , then H-PEF
implies G-PEF.

Proof. Let A be an H-PEF allocation in an n-agent resource
allocation instance with set of items M . Let i ∈ [n] be any
agent. Since NeigG(i) ⊆ NeigH(i), the envy-freeness con-
dition vi(Ai) ≥ vi(Aj) clearly holds for j ∈ NeigG(i).
Summing over the envy-freeness condition for agent i with
respect to the agents in NeigH(i) \NeigG(i), we get

(degH(i)− degG(i)) · vi(Ai) ≥
∑

j∈NeigH(i)\NeigG(i)

vi(Aj).

The proportionality condition (due to the fact that A is H-
PEF) can be written as

(n− 1− degH(i)) · vi(Ai) ≥
∑

j 6∈NeigH(i)

vi(Aj).

By summing the two inequalities, we obtain that

(n− 1− degG(i)) · vi(Ai) ≥
∑

j 6∈NeigG(i)

vi(Aj),

which yields that the proportionality condition for agent i
with respect her non-neighbors in the social graph G holds
as well; the fact that A is G-PEF follows.

Again, for almost every other relation between social
graphs H and G, H-PEF does not necessarily imply G-PEF.

Theorem 14. Let G = ([n], E(G)) and H = ([n], E(H))
be n-node (with n ≥ 3) social graphs which have two nodes
u and v such that degH(u) ≤ n − 3, and edge (u, v) be-
longs to E(G) but not to E(H). Then, there exists an n-
agent resource allocation instance that has an H-PEF but
no G-PEF allocation.

Proof. We will prove the theorem using the following in-
stance. Since degH(u) ≤ n − 3, let w be a node different
than u and v such that the directed edge (u,w) does not be-
long to E(H). There are n items. The valuation of agent u
is 1, 0, and 2 for the first three items and 1 for the remaining
ones. The valuation of agent v is 1 for item 2 and 0 for the
remaining items. The valuation of agent w is 1 for item 3 and
0 for the remaining items. Every other agent has valuation 0
for the first three items and 1 for each of the remaining ones.
See the next table:

agent 1 2 3 4 · · · n
u 1 0 2 · 1 ·
v 0 1 0 · 0 ·
w 0 0 1 · 0 ·
· · · · · · ·
x · 0 · · 1 ·
· · · · · · ·



Since the agents v and w have non-zero value for a single
item and the n − 3 agents besides u, v, and w have value
for the items 4, ..., n only, any H-PEF or G-PEF allocation
should at least satisfy the following properties:

• agents u, v, and w get items 1, 2, and 3, respectively, and
• each of the remaining n − 3 agents gets one of the items

4, ..., n.

Such an allocation is indeed H-PEF since agent u gets a
value of 1 from item 1 and her total value for the n − 1 −
degH(u) items that are allocated to agents v, w, and the
other n − 3 − degH(u) non-neighbors of u among the last
n− 3 agents is exactly n− 1− degH(u).

In contrast, this allocation is not G-PEF. If (u,w) belongs
to E(G) agent u will envy the item allocated to agent w.
Otherwise, the total value agent u has for the items allocated
to her, her n − 3 − degG(u) non-neighbors among the last
n−3 agents, and agent w is exactly n−degG(u) and, hence,
her value for item 1 which is allocated to her is strictly below
the proportionality threshold.

We conclude this section by stating that G-PEF is much
stronger than the notion of graph envy-freeness5 from
Chevaleyre, Endriss and Maudet (2017). Recall that an al-
location is G-EF if no agent is envious for her neighbors;
clearly, G-PEF implies G-EF.
Theorem 15. Let G = ([n], E(G)) be a non-complete n-
node (with n ≥ 2) social graph. Then, there exists an n-
agent resource allocation instance that has a G-EF alloca-
tion but no G-PEF allocation.

Proof. First observe that, for every graph, G-PEF implies
PROP (by Theorem 13). We will prove the theorem by show-
ing that G-EF and PROP may not be compatible. Since G is
not complete, let v be a node such that (u, v) 6∈ E(G). Then,
consider the following instance. There are n items. The val-
uation of agent u is 1 and n for the first two items and 0 for
the remaining ones. The valuation of agent v is 1 for item 2
and 0 for the remaining items. Every other agent has valua-
tion 0 for the first two items and 1 for each of the remaining
ones. See the next table.

agent 1 2 3 · · · n
u 1 n · 0 ·
v 0 1 · 0 ·
· · · · · ·
x 0 0 · 1 ·
· · · · · ·

The allocation in which agents u and v get items 1 and
2, respectively, and each of the remaining agents get one
of the items 3 to n is G-EF (recall that (u, v) 6∈ E(G)).
On the other hand, no allocation can be PROP as each of
the agents u and v need item 2 in order to reach her pro-
portionality threshold for the items allocated to her and her
non-neighbors.

5We note that we have adapted the original definition of graph
envy-freeness, which uses undirected graphs in the paper of Cheva-
leyre, Endriss and Maudet (2017), in order to be as close to the
G-PEF fairness notion as possible. Still, G-PEF is much stronger.

6 A General Framework for Defining
Fairness Concepts

We now propose an abstract and powerful framework of fair-
ness concepts that captures all existing concepts (previous
ones and the ones in the current paper) for indivisible items
and seems to be useful in defining new ones. The frame-
work is based on a profile of hypergraphs, with a hypergraph
corresponding to each agent. Let H = (H1, . . . ,Hn) be a
hypergraph profile where each Hi is a hypergraph over [n]
consisting of hyper-edges that contain node i. Let X be a
fairness concept such as EF, PROP, mFS, MFS, etc.

An allocation A satisfiesH-HG-X if for any agent i ∈ [n]
and any hyperedge e ∈ Hi, there is a re-allocation Ai,e

of the items in ∪j∈eAj among the agents of e such that
Ai,e

i = Ai, in which the fairness constraints corresponding
to fairness concept X for agent i with respect to the agents
in e are satisfied. Let us specify the fairness constraints cor-
responding to fairness concepts EF, PROP, mFS, and MFS
for agent i in the allocation Ai,e:

• EF: vi(A
i,e
i ) ≥ vi(A

i,e
j ) for every j ∈ e.

• PROP: vi(A
i,e
i ) ≥ 1

|e|
∑

j∈e vi(A
i,e
j ).

• mFS: vi(A
i,e
i ) ≥ umFS

i (
⋃

j∈e A
i,e
j , |e|).

• MFS: vi(A
i,e
i ) ≥ uMFS

i (
⋃

j∈e A
i,e
j , |e|).

Observe that, as vi(A
i,e
i ) = vi(Ai),

∑
j∈e vi(A

i,e
j ) =∑

j∈e vi(Aj), umFS
i (

⋃
j∈e A

i,e
j , |e|) = umFS

i (
⋃

j∈e Aj , |e|),
and uMFS

i (
⋃

j∈e A
i,e
j , |e|) = uMFS

i (
⋃

j∈e Aj , |e|), in all cases
above besides EF, the re-allocation Ai,e does not need to be
different than A.

Intuitively, hyper-edges of Hi indicate social constraints
that affect the awareness level of agent i about the allocation.
A hyper-edge e ∈ Hi indicates that agent i knows the items
that are allocated to the agents in e besides her, even though
it does not provide any information about how they are dis-
tributed among these agents. Of course, each agent always
knows the items in her bundle.

We can show that several fairness notions from the recent
literature as well as all fairness notions defined in the previ-
ous sections can be obtained as special cases of this frame-
work. Let us consider some examples.

First, consider the hypergraph profile H = (H1, ...,Hn)
in which Hi consists of all pairs of agents that include i.
Then, H-HG-EF is identical to EF. Actually, H-HG-PROP
(and, consequently, H-HG-mFS) is identical to EF as well
since a PROP allocation among two agents is always EF.
Notice that, as long as all pairwise hyper-edges are present
in all hypergraphs of the profile H, we cannot get any
stronger fairness concept than EF by allowing bigger hyper-
edges. H-HG-MFS is the pairwise-MFS fairness concept
from Caragiannis et al. (2016) and requires that the restric-
tion of the allocation to any pair of agents is MFS. We re-
mark that it is not known whether all resource allocation in-
stances admit such allocations or not.

Next, consider the hypergraph profile in which Hi con-
sists of the single hyper-edge [n] for every i ∈ [n]. In this



case, H-HG-EF is equivalent to EEF. Using mFS, PROP, or
MFS for X instead of EF,H-HG-X coincides with X.

Let us now redefine the graph versions of fairness notions
we studied in Sections 4 and 5. For a given simple graph G,
we define the hypergraph profile as follows:Hi contains the
hyperedge [n] \ NeigG(i) (which consists of i and all her
non-neighbors in G) and pair {i, j} for each neighbor j of
i in G. Then, H-HG-EF and H-HG-PROP are identical to
G-EEF and G-PEF, respectively.

Finally, given a simple graph G, consider the hypergraph
profile H = (H1, ...,Hn) in which Hi contains the pair
{i, j} for each neighbor j of i in G. Then, H-HG-EF is the
graph envy-freeness notion from Chevaleyre, Endriss and
Maudet (2017) while H-HG-PROP is the (discrete version
of) network proportionality that is studied by Abebe, Klein-
berg and Parks (2017); Bei, Qiao and Zhang (2017).

7 Future Research Directions
Let us conclude by briefly discussing possible directions for
future research. First, there are other epistemic notions of
fairness that are worth studying. As an example, let us use
the term optimistic EEF for an allocation which, for every
agent i and every re-allocation of the remaining items, there
is another agent j that agent i does not envy. How does op-
timistic EEF relate to known fairness notions? Clearly, it is
weaker than proportionality and it is not hard to see that this
property is not weaker than MFS (consider two agents of
identical valuations and one item).

In Sections 4 and 5, we have combined only PROP and
EF with social graphs; mFS and MFS could also be used.
EFX — envy-freeness up to any single item; see Caragian-
nis et al. (2016) — is another basic fairness concept that
could also be used, either together with social graphs or as
part of our abstract framework. This could lead to another
rich sub-hierarchy of fairness notions but would require the
existence of non-EFX resource allocation instances; whether
such instances exist or not is a major open problem.

Novel fairness concepts can be defined using our abstract
framework. Consider, for instance, H-HG-PROP in which
Hi consists of all k-sized sets of agents that contain i. This
yields EF for k = 2, PROP for k = n, and new intermediate
fairness concepts for the values in between.

Finally, it would be interesting to extend the fairness no-
tions defined here to agents with non-additive valuations or
in the completely different settings of (contiguous) cake-
cutting or allocations of divisible items.
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Bouveret and Jérôme Lang are supported by project ANR-
14-CE24-0007-01 “CoCoRICo-CoDec”. The authors also
thank Abdallah Saffidine for insightful discussions.

References
Abebe, R.; Kleinberg, J. M.; and Parkes, D. C. 2017. Fair
division via social comparison. In Proceedings of the 16th
Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 281–289.

Bei, X.; Qiao, Y.; and Zhang, S. 2017. Networked fairness in
cake cutting. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI), 3632–3638.
Bouveret, S., and Lemaı̂tre, M. 2016. Characterizing
conflicts in fair division of indivisible goods using a scale
of criteria. Autonomous Agents and Multiagent Systems
30(2):259–290.
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