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Abstract

We investigate five different fairness criteria in a simple model of fair resource
allocation of indivisible goods based on additive preferences. We show how these
criteria are connected to each other, forming an ordered scale that can be used
to characterize how conflicting the agents’ preferences are: for a given instance
of a resource allocation problem, the less conflicting the agents’ preferences are,
the more demanding criterion this instance is able to satisfy, and the more
satisfactory the allocation can be. We analyze the computational properties
of the five criteria, give some experimental results about them, and further
investigate a slightly richer model with k-additive preferences.

Keywords : Computational social choice, resource allocation, fair division,
indivisible goods, preferences.



1 Introduction

In the context of economically motivated agents, the fair allocation of resources
is an important and frequent problem. A subcase of this problem, subject of
this article, namely the allocation of indivisible goods (or objects) to a set of
agents, arises in a wide range of real world applications, including auctions, di-
vorce setlements, wave frequency allocation, airport traffic management, spatial
resource allocation [21], fair scheduling, allocation of tasks to workers, articles
to reviewers, courses to students [26].

More precisely, we study here a simple model of fair division of indivisible
goods based on the following assumptions.

• A set of indivisible goods which will be called objects must be distributed
among a set of agents.

• Agents have numerical additive preferences over the objects (except in
Section 7 where we consider a more general model).

• The allocation process is centralized, that is, it is decided by a neutral
arbitrator or computation, taking into account only agents’ preferences,
in a single step.

• No monetary transfer is possible between agents.

Even if this model seems restrictive (especially the second assumption), it has
been largely investigated (see for example [3, 16, 11, 19, 9, 22, 6, 2, 1, 7, 5, 15, 23])
because it offers a natural compromise between simplicity and expressiveness.

Our contribution consists mainly in providing a logical scale characterizing
the degree of conflict inherent to each problem instance.

An important point in this context is how agents express their preferences. In
a centralized allocation process, the agents have first to communicate and hence
explicitly describe their preferences over the objects. Two main approaches are
appropriate for that. The first rests on a purely ordinal expression of preferences,
such as a weak (partial or total) order. The second one exploits a numerical
expression of preferences taking the form of utility functions. This article, for
convenience, rests on the second approach, but many of the results presented
here could be transposed in the first, purely ordinal one.

Another crucial point in fair allocation mechanisms is the following : how
to define fairness and how can it be evaluated ? Once again two main options
are available. The first one consists in defining a collective utility function
(CUF) aggregating individual agents’ utilities. If the CUF is well chosen, its
outcome when applied to individual utilities reflects the fairness (and possibly
other desirable properties) of a given allocation. The arbitrator just looks for
an allocation maximizing this CUF. The second option consists in defining, by
mean of a boolean (logical) criterion, what is considered as fair. This is the
approach followed by Lipton et al. [22] among others for envy-freeness. This
article explores mainly this logical option.
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While most papers in fair division focus on a specific criterion, here we con-
sider five of them and investigate their connection to each other. Four of these
criteria are classical or already known, namely: max-min fair-share (MFS), pro-
portional fair-share (PFS), envy-freeness (EF) and competitive equilibrium from
equal incomes (CEEI), and we introduce an original one: min-max fair-share
(mFS). All these criteria have a natural interpretation and a very appealing
quality: they do not need a common scale of agents’ utilities.1

Our contribution. Some instances of fair sharing problems are more con-
flicting than others. When objects are numerous and agents prefer somewhat
different objects, a well-balanced allocation, satisfying all participants, is likely
to be found. On the opposite, when agents have similar preferences (they want
more or less the same objects with the same intensity), or when there are only
a few objects to distribute, the sharing out will be for sure conflicting.

Our main and original contribution is the following. Starting from the simple
model of fair division sketched above, we show that the five criteria cited above
form a linear scale of increasing requirements, that can be used to characterize
formally the level of fairness of a given allocation. The more demanding criterion
is satisfied by an allocation, the more this allocation is fair, harmonious and not
conflicting.

This scale of properties can be used to characterize not only an allocation,
as said before, but also a resource allocation problem instance: the degree of
non conflictness of an instance is measured by the most demanding criterion an
allocation from this instance can satisfy.

This article is structured as follows. Section 2 describes the model : fair
division of indivisible objects under numerical additive preferences. The scale of
five properties characterizing the fairness of an allocation, as well as associated
computational complexity results are exposed in Section 3. We go back to
the collective utility function approach in Section 4 to connect the important
egalitarian CUF to the scale of criteria. Section 5 is devoted to a bunch of
interesting restricted cases. Some experimental results on the scale of criteria
are presented in Section 6. Extending the model to k-additive preferences,
Section 7 presents a quite different perspective.

2 Model

Let A = {1, . . . , n} be a set of agents and O = {1, . . . ,m} be a set of indivisible
objects. An allocation of the objects to the agents is a vector −→π = 〈π1, . . . , πn〉,
where πi ⊆ O is the bundle of objects allocated to agent i, called agent i’s
share. An allocation −→π is said to be admissible if and only if it satisfies the
two following conditions: (i) i 6= j ⇒ πi ∩ πj = ∅ (each object is allocated to
at most one agent) and (ii) ∪i∈Aπi = O (all the objects are allocated). We will

1Whereas most CUF – except Nash – only make sense if the utilities are expressed on a
common scale or normalized.
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write Fn,m the set of admissible allocations for a given set of n agents and m
objects (n and m will be omitted when the context is clear). All the allocations
considered in this paper are implicitly admissible.

To find a “good” allocation, it is necessary to know the agents’ preferences
over the sets of objects they may receive. We make two usual assumptions
concerning the way agents express their preferences. First, we consider that
they are expressed numerically by a utility function ui : 2O → R+ specifying,
for each agent i, the satisfaction ui(π) she enjoys if she receives bundle π: this
is the utilitarian model [24]. Second, we consider (except in Section 7) that
the agents’ preferences are additive, which means that the utility function of an
agent is defined as follows:

ui(π)
def
=
∑
l∈π

w(i, l), (1)

where w(i, l) is the weight given by agent i to object l. This assumption, as
restrictive it may seem to be, is made by a lot of authors [2, 22, e.g ] and offers
a good compromise between preference expressive power and conciseness.

Adapting the terminology from the survey by Chevaleyre et al. [13], we de-
fine an additive MultiAgent Resource Allocation instance (add-MARA instance
for short) as a triple 〈A,O, w〉, where A is a set of agents, O is a set of objects,
and w : A×O → R+ is a function specifying the weight w(i, l) given by agent
i to object l.

In the following, indices i and j will always refer to agents, and l to objects.
To ease notation, we will adopt a matrix representation W for the weight func-
tion w, where the element at row i and column l represents the weight w(i, l).
Finally, we will write I the set of all add-MARA instances.

The basic notions of computational complexity [27] are supposed to be well-
known by the reader: P and NP refer to the two usual complexity classes; ΣP

2 is
the class of problems that can be solved in non-deterministic polynomial time
by a Turing machine augmented by an NP oracle.

3 Five fairness criteria

Even before any fairness consideration, the most basic desirable criterion for a
resource allocation is Pareto-efficiency, of which the definition is recalled here:

Definition 1. Let 〈A,O, w〉 be an add-MARA instance. We say that allocation
−→π dominates allocation −→π ′ if and only if ui(πi) ≥ ui(π′i) for all i, with at least
one strict inequality. A Pareto-efficient allocation is an undominated allocation.

The Pareto-efficiency criterion encodes the idea that the resource to be
shared should not be wasted or under-exploited, but tells nothing about fairness.
Two approaches are possible to deal with the fairness requirement.

1. If the preferences are numerical, we can use a collective utility function
(CUF) to aggregate the individual preferences into a collective preference,
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and look for an allocation that maximizes this function. If this function is
carefully chosen, it can encode some idea of fairness (like the egalitarian
criterion min for example, discussed in Section 4).

2. We can chose a fairness criterion and look for an allocation that obeys it,
if some exists. The two prominent fairness criteria are envy-freeness [17]
and proportional fair-share [31].

In this paper, we adopt the second point of view. We will introduce five
fairness criteria (including envy-freeness and proportional fair-share) and show
how they form together a scale of criteria of increasing strength. This scale
provides an evaluation of the degree of fairness of a given allocation on the one
hand, and can give an idea of the degree of “conflictuality” of a given add-
MARA instance. For each one of these criteria, we write −→π � C if the allocation
−→π satisfies criterion C; I|C denotes the set of add-MARA instances admitting
at least one allocation satisfying criterion C.

3.1 Max-min fair-share

One of the most prominent fairness criteria in resource allocation problems is
proportional fair-share, that will be discussed in details in Section 3.2. This
criterion, coined by Steinhaus [31] in the context of continuous fair division
(cake-cutting) problems, states that each agent should get from the allocation
at least the nth of the total utility she would have received if she were alone.
However, when one deals with indivisible objects, it is often too demanding:
consider for example a problem with one object and two agents, where obviously
no allocation can give her fair share to each agent. That is why it has been
recently adapted to this context by Budish [12], which defines the max-min fair
share, whose original definition is purely ordinal, but which can be defined in
our (utilitarian) setting as follows:

Definition 2. Let (A,O, w) be an add-MARA instance. The max-min share
of agent i for this instance is

uMFS
i

def
= max−→π ∈F

min
j∈A

ui(πj)

We say that the allocation −→π satisfies the criterion of max-min fair-share, writ-
ten −→π � MFS, if uMFS

i ≤ ui(πi) for all i (that is, each agent obtains at least her
max-min fair share in −→π ).

Example 1. Let us consider the 2 agents / 4 objects instance defined by the
following weight matrix:

W =

(
∗7 2 6 ∗10
4 ∗7 ∗7 7

)
We have uMFS

1 = 12 (with share {2, 4}) and uMFS
2 = 11 (with share {1, 2}). The

allocation −→π = 〈{1, 4}, {2, 3}〉 marked with stars satisfies max-min fair share,
with u1(π1) = 17 > 12 and u2(π2) = 14 > 11.
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The max-min fair-share of an agent is the maximal utility that she can hope
to get from an allocation if all the other agents have the same preferences as
her, when she always receive the worst share (it is the best of the worst shares).

The max-min fair-share can be considered as the minimal amount of utility
that an agent could feel to be entitled to, based on the following argument: if all
the other agents have the same preferences as me, there is at least one allocation
that gives me this utility, and makes every other agent better off; hence there
is no reason to give me less. It is also the maximum utility that an agent can
get for sure in the allocation game “I cut, I choose last”: the agent proposes
her best allocation (that will be refered to as a max-min cut) and leaves all the
other ones choose one share before taking the remaining one.

The max-min fair-share level is loosely connected to a result from [20], re-
cently refined by [23], which establishes a worst case garantee on the utility an
agent can have. However, this garantee only depends on the maximum weight
of an agent, and so is not very informed, often being just 0.

Beyond its appealing formulation, max-min fair-share has a computational
drawback: the computation of the max-min fair-share uMFS

i itself for a given
agent is complex. More precisely, the following decision problem is NP-complete:

Problem 1 [MFS-Comp]

Input: An add-MARA instance 〈A,O, w〉, an agent i, an integer K.

Question: Do we have uMFS
i ≥ K?

Proposition 1. [MFS-Comp] is NP-complete, for all n ≥ 2.

Proof. Membership to NP is obvious. NP-hardness can be proved by reduction
from the partition problem:

Problem 2 [Partition]

Input: A set X = {x1, . . . , xn} and a mapping s : X → N such that∑
xi∈X s(xi) = 2L.

Question: Is there a partition (X1,X2) of X such that
∑

xi∈X1
s(xi) =∑

xi∈X2
s(xi) = L?

From a given instance of [Partition], we can create an instance of [MFS-
Comp] with two agents and n objects {1, . . . , n}. The agents’ preferences are
identical and defined as w(1, l) = w(2, l) = s(xl). Integer K is defined as L,
which completes the reduction.2

Let us now focus on the problem [MFS-Exist] of determining, for a given
add-MARA instance, if there is an allocation satisfying the max-min fair-share
criterion. Strong evidences led us to think that every add-MARA instance had
at least one such allocation: it is true in many restricted cases (see Section 5),

2We use here a very similar idea to the one used by [22, p4].
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and no counterexample was found in thousands of randomly generated instances
(see Section 6). However, surprisingly, Procaccia and Wang [28] have recently
proved (by a very tricky construction) that there actually exists add-MARA
instances for which there is no allocation satisfying max-min fair-share. Put in
other words, we thus have I|MFS ( I.

3.2 Proportional fair-share

The aforementioned concept of proportional fair-share was originally defined
not on the utilities but on the resources themselves [31]. A lot of authors have
since given a natural utilitarian interpretation of this notion, like the one that
follows:

Definition 3. Let 〈A,O, w〉 be an add-MARA instance. The proportional fair-
share of agent i for this instance is

uPFS
i

def
=

1

n
ui(O) =

1

n

∑
l∈O

w(i, l).

We say that the allocation −→π satisfies the criterion of proportional fair-share,
written −→π � PFS, if uPFS

i ≤ ui(πi) for all i (that is, each agent obtains at least
her proportional fair-share in −→π ).

The proportional fair-share of an agent represents the maximal utility she
would receive from a virtual perfectly equitable allocation if all the agents had
exactly the same preferences as her (for all i, j, l : w(j, l) = w(i, l)). Moreover,
in the virtual allocation obtained by dividing each object into n parts, each
one allocated to a different agent, each single agent would enjoy exactly her
proportional fair-share.

This criterion is more demanding than max-min fair-share:

Proposition 2. Let 〈A,O, w〉 be an add-MARA instance. We have uMFS
i ≤

uPFS
i , for all i ∈ A. Hence, for all −→π , we have −→π � PFS =⇒ −→π � MFS, and

thus I|PFS ⊂ I|MFS.

Proof. Let −→π be an allocation and i an agent. We have
∑
j∈A ui(πj) = ui(O).

The minimum of a set of numbers being lower than their mean, we have

min
j∈A

ui(πj) ≤
1

n

∑
j∈A

ui(πj) =
1

n
ui(O) = uPFS

i

Taking the max over the set of allocations on the two sides of the latter inequality
directly leads to the result: uMFS

i ≤ uPFS
i .

The inclusion in Proposition 2 is strict: we can consider a instance with two
agents and one object, for which every allocation satisfies max-min fair-share,
but none satisfies proportional fair-share.
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Contrary to max-min fair-share, computing the proportional fair-share for a
given agent is easy. However, determining whether a given add-MARA instance
has an allocation satisfying proportional fair-share (problem that we shall call
[PFS-Exist]) is computationally hard:

Proposition 3. [PFS-Exist] is NP-complete, for all n ≥ 2.

This proposition can be proved using a similar reduction as the one used in
proof of Proposition 1.

3.3 Min-max fair-share

The min-max fair-share criterion that we now introduce is, to the best of our
knowledge, original. It can be seen as the symmetrical version or the max-min
fair-share criterion defined earlier.

Definition 4. Let (A,O, w) be an add-MARA instance. The max-min share
of agent i for this instance is

umFS
i

def
= min−→π ∈F

max
j∈A

ui(πj)

We say that the allocation −→π satisfies the criterion of max-min fair-share, writ-
ten −→π � mFS, if umFS

i ≤ ui(πi) for all i (that is, each agent obtains at least her
min-max fair share in −→π ).

The min-max fair-share of an agent is the minimal utility that she can hope
to get from an allocation if all the other agents have the same preferences as
her, when she always receive the best share (it is the worst of the best shares).
It is also the minimal utility that an agent can get for sure in the allocation
game “Someone cuts, I choose first”. The following result is the equivalent of
Proposition 2 and can be proved in a similar way:

Proposition 4. Let 〈A,O, w〉 be an add-MARA instance. We have uPFS
i ≤

umFS
i , for all i ∈ A. Hence, for all −→π , we have −→π � mFS =⇒ −→π � PFS and

thus I|mFS ⊂ I|PFS.

This inclusion is strict, as the following example shows.

Example 2. Let us consider the 3 agents / 3 objects instance defined by the
following weight matrix:

W =

 2 2 ∗2
3 ∗2 1
∗3 2 1


Obviously uPFS

i = 2 for each agent. Hence the allocation marked with stars
gives to each agent her proportional fair-share. However, no allocation gives to
each agent her min-max fair-share (which is 2 for agent 1 and 3 for the other
ones).
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Exactly like the max-min fair-share, and for similar reasons, the compu-
tation of the min-max fair-share for a given agent is hard. More precisely, if
[mFS-Comp] is the equivalent for min-max fair-share of decision Problem 1, the
following proposition holds.

Proposition 5. [mFS-Comp] is coNP-complete, for all n ≥ 2.

The decision problem becomes coNP-complete because the min-max fair-
share is defined as a minimization, and that we want to know, as for the max-
min fair-share, whether the min-max fair-share of a given agent is greater than
a given threshold. The proof is very similar to the one of Proposition 1, and is
thus omitted.

Of course, an add-MARA instance may not always have an allocation satis-
fying min-max fair-share. The decision problem of determining whether there
exists one is very likely to be hard, but its precise complexity remains unknown.3

3.4 Envy-freeness

The envy-freeness criterion [17] is probably the most prominent one.

Definition 5. Let 〈A,O, w〉 be an add-MARA instance. The allocation −→π
satisfies the criterion of envy-freeness (or simply is envy-free), written −→π � EF,
when for all i, j : ui(πi) ≥ ui(πj) (no agent strictly prefers the share of another
agent to her own share).

A known fact (cited at least in some working papers) in that envy-freeness
implies proportionality for additive preferences. The following proposition is
actually a bit stronger.

Proposition 6. Any envy-free allocation gives to each agent her min-max fair-
share. In other words, for all −→π : −→π � EF =⇒ −→π � mFS, and hence
I|EF ⊂ I|mFS.

Proof. In every envy-free allocation, each agent obtains a share which is of
maximal utility for her in this allocation. Hence, such a share has a greater
utility than her min-max fair-share. More formally : let −→π be an envy-free
allocation. Then for all i, j : ui(πi) ≥ maxj∈A ui(πj) by definition. Since
−→π ∈ F , ui(πi) ≥ min−→π ∈F maxj∈A ui(πj) = umFS

i .

Once again, the inclusion introduced in this proposition is strict, as shows
the following example.

Example 3. Let us consider the 3 agents / 4 objects instance defined by the
following weight matrix:

W =

 ∗10 6 6 1
10 ∗6 ∗6 1
1 6 6 ∗10


3All that we can say for sure is that this problem belongs to ΣP

2 .
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We have umFS
i = 10 for each agent, thus the marked allocation gives the min-max

fair-share to every agent. Now suppose that there exists an envy-free allocation
−→π . This −→π should give the same utility to agent 1 and 2 since they have the
same preferences (otherwise they would be envious): either −→π gives nothing to
them, or it gives 6 to each of them. In both cases they envy agent 3. Hence
there is no envy-free allocation for this instance.

3.5 Competitive Equilibrium from Equal Incomes

The last introduced criterion is a classical notion in microeconomics [25, for
example]. It has, to the best of our knowledge, almost never been considered
in computer science, with the notable exception of the work of Othman et al.
[26] about course allocation. This criterion is based on the following argument:
the sharing process should be considered as a search for an equilibrium between
the supply (the set of objects, each one having a public price) and the demand
(the agents’ desires, each agent having the same budget for buying the objects).
A competitive equilibrium is reached when the supply matches the demand.
The fairness argument is very straightforward: prices and budgets are the same
for everyone. A lot of variants of this notion exist; the following definition is
adapted from Budish [12].

Definition 6. Let 〈A,O, w〉 an add-MARA instance, −→π an allocation, and −→p ∈
[0, 1]m a price vector. A pair (−→π ,−→p ) is said to form a competitive equilibrium
from equal incomes (CEEI), if for each agent i,

πi ∈ argmaxπ⊆O{ui(π) :
∑
l∈π

pl ≤ 1}.

In other words, πi is one of the maximal shares that i can buy with a budget of
1, given that the price of object l is pl.
We say that the allocation −→π satisfies the CEEI criterion, written −→π � CEEI,
if there exists a price vector −→p such that (−→π ,−→p ) forms a CEEI.

Example 4. Let us consider the 2 agents / 4 objects instance defined by the
following weight matrix:

W =

(
∗7 2 6 ∗10
7 ∗6 ∗8 4

)
The marked allocation, associated to price vector (0.8, 0.2, 0.8, 0.2) forms a CEEI.

The following proposition holds for a lot of continuous resource allocation
instances (divisible goods, existence of monetary compensations...). It holds
also in our discrete model:

Proposition 7. Every CEEI allocation is envy-free. That is, for all −→π : −→π �
CEEI =⇒ −→π � EF, and hence I|CEEI ⊂ I|EF.
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Proof. Let −→π be a CEEI allocation, and suppose that ui(πj) > ui(πi) (agent
i envies j). Since budgets and prices are the same for everyone, πi is not the
maximal utility share which can be bought by agent i, which contradicts the
definition of the CEEI. Thus −→π is envy-free.

The CEEI also has the following interesting property:

Proposition 8. When the agents’ preferences are strict (meaning that distinct
shares have distinct utilities), any CEEI allocation is Pareto-efficient.

Proof. Let (−→π ,−→p ) be a CEEI. For a share π, we write p(π)
def
=
∑
l∈π pl. Suppose

that −→π is not Pareto-efficient. Then there is a −→π ′ such that ui(πi) ≤ ui(π
′
i)

for all i, with at least one strict inequality. Since −→π is optimal under budget
−→p , we have ui(πi) < ui(π

′
i) ⇒ p(πi) < p(π′i). But ui(πi) = ui(π

′
i) ⇒ πi =

π′i ⇒ p(πi) = p(π′i) because preferences are strict. Therefore
∑
i∈A
−→p (πi) <∑

i∈A
−→p (π′i), which is impossible. Thus −→π is Pareto-efficient.

The following example shows that the strict preference hypothesis, in the
previous proposition, is necessary.

Example 5.

W =

 ∗2 3 3 ∗2
2 3 ∗4 1
0 ∗4 2 4

 → 4
→ 4
→ 4

In this instance, preferences are not strict. The marked allocation, associated
to price vector 〈0.5, 1, 1, 0.5〉 forms a CEEI. However, it is dominated by the al-
location 〈(1, 2), (3), (4)〉 which provides utilities (5, 4, 4). The marked allocation
is CEEI but not Pareto-efficient.

As a consequence of Propositions 7 and 8, when preferences are strict, a
necessary condition for the existence of a CEEI is the existence of an envy-free
Pareto-efficient allocation (which is known to be ΣP

2 -complete [15]). With this
necessary condition, we can prove that the inclusion in Proposition 7 is strict,
as the following example shows:

Example 6. Let us consider the 3 agents / 5 objects instance in which prefer-
ences are strict, defined by the following weight matrix:

W =

 2 12 7∗ †15 ∗†11
∗†12 15 †11 ∗7 2

15 ∗†20 9 2 1


It can be proved that the allocation marked with ∗ is the only envy-free allocation.
However, this allocation is not Pareto-efficient, as it is dominated by the one
marked with †. Hence there is no Pareto-efficient envy-free allocation. The
preferences being strict, Proposition 8 implies that there is no CEEI allocation.

Three open questions remain:
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• determining whether the necessary condition of Propositions 7 and 8 is
also sufficient : do we have, under the hypothesis of strict preferences,
EF plus Pareto-efficiency implies CEEI ? This result would give, in this
discrete model, under the strict preference hypothesis, the equivalence
between CEEI and EF plus Pareto-efficiency. A counter-example of this
result would be to find an instance with strict preferences, having an EF
and Pareto-efficient allocation but not CEEI

• finding the precise complexity of determining whether a given allocation
is CEEI

• finding an “efficient” algorithm determining whether a CEEI allocation
exists for a given add-MARA instance and giving one if it exists.

3.6 A scale of criteria

Putting Propositions 2, 4, 6 and 7 together leads to the following implication
sequence, for any allocation −→π : (−→π � CEEI) ⇒ (−→π � EF) ⇒ (−→π � mFS) ⇒
(−→π � PFS)⇒ (−→π � MFS).

In other words, these criteria can be ranked from the least to the more
demanding as follows:

weaker stronger

EFPFS
MFS mFS CEEI

As the propositions also show, these results can also be interpreted the other
way around, in terms of add-MARA instances: I|CEEI ⊂ I|EF ⊂ I|mFS ⊂
I|PFS ⊂ I|MFS ⊂ I, all these inclusions being strict. These five criteria can
thus be used to characterize the level of conflict inherent to a given add-MARA
instance. In an instance for which it is proved to exist a CEEI, the level of
conflict is very low, and thus it is possible to find an allocation which is quite
satisfactory for everyone. On the other hand, an instance for which the best
we can find is an allocation satisfying MFS is very prone to conflicts, and in
that case, the benevolent arbitrator will have no choice but to leave some agents
unsatisfied.

In can be noticed that all these criteria have a kind of distributed flavor.
MFS, PFS and mFS are of similar nature: every agent, only considering her own
share, is able to judge whether she is satisfied or not. Envy-freeness requires the
additional knowledge of the other shares, but each agent is still able to assert
on her own whether she is envious or not. As for the CEEI, once the prices
are fixed by the arbitrator, each agent is able to compute her own share (up to
some equivalent shares).
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Beyond their differences, these five criteria all have a common very appealing
feature: they are not based on interpersonal comparison of utilities (actually,
four of them are even purely ordinal — PFS is not). This leads to the following
(easy) proposition:

Proposition 9. The max-min fair-share, proportional fair-share, min-max fair-
share, envy-freeness and CEEI criteria are preserved by any linear dilatation of
individual utility scales.

More formally, if 〈A,O, w〉 is an add-MARA instance and −→π an allocation
satisfying criterion C, then −→π also satisfies P for any instance 〈A,O, wK〉, where
K : A → R+ and wK is defined as follows: wK(i, l) = K(i)× w(i, l).

Finally, MFS, PFS and mFS have an interesting characteristic, which comes
from the fact that they are all defined as minimum thresholds to satisfy: if for
a given add-MARA instance there is an allocation satisfying one of these three
criteria, then either this allocation is Pareto-efficient, or there exists another
allocation which both satisfies Pareto-efficiency and this criterion. This is not
the case for the envy-free criterion : as Example 6 shows, one can find instances
having envy-free allocations, none of them being Pareto-efficient.

4 The egalitarian approach

As pointed out in the beginning of Section 3, an orthogonal approach for en-
suring fairness in resource allocation problems, when agents preferences are
numerically expressed, is to base the sharing process upon a collective utility
function, to be maximized. Probably the most prominent one is the egalitarian
CUF, which can be defined as follows in our sharing context :

Definition 7. Let 〈A,O, w〉 be an add-MARA instance. The egalitarian CUF is
the function ge : −→π 7→ mini∈A ui(πi). Any allocation maximizing the egalitarian
CUF will be called min-optimal.

This CUF is the formal translation of Rawlsian egalitarianism [29], which
recommends to maximize the utility of the least well-off agent.

At this point a natural question arises : what are the links between on one
hand the egalitarianist approach of fairness (the min CUF) and on the other
hand the approach based on criteria (Section 3) ? Actually, some criteria are not
fully compatible with egalitarianism. For example, an envy-free allocation can
be far away from being min-optimal. This question is raised in [10]. However,
as we will see just below, egalitarianism is more compatible with proportional
fair-share as well as with max-min fair-share.

As egalitarianism requires inter-agent comparisons of utilities,4 we assume
in this section normalized weights, namely: there is a constant K such that for
all i,

∑
l∈O w(i, l) = K.

4Conversely, the five criteria (Section 3) do not require inter-agent comparisons of utilities,
even if our examples use normalized weights.
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Proposition 10. If there is an allocation satisfying the proportional fair-share
criterion (with normalized weights), then any min-optimal allocation satisfies
this criterion.

Proof. For all i, uPFS
i = K/n. If there is an allocation −→π such that −→π � PFS,

then K/n ≤ mini∈A ui(πi). Let −→π ? be a min-optimal allocation. By definition
mini ui(πi) ≤ mini ui(π

?
i ), hence K/n ≤ mini∈A ui(π

?
i ) and K/n ≤ ui(π

?
i ), for

all i.

This proposition also gives a practical way to find an allocation satisfy-
ing proportional fair-share if there is one: normalize weights and compute a
min-optimal allocation. If this allocation obeys the criterion, then we get it,
otherwise there is no such allocation.

Things are less clear for max-min fair-share. On the one hand, the latter
result does not hold for max-min fair-share,5 as shows the following counter-
example with 3 agents and 4 objects (K = 100).

Example 7. Consider the following instance, given by its weight matrix. 58 †15 † ∗ 19 8
†63 ∗5 25 ∗7
37 10 ∗27 †26

 → ∗19 / †34
→ ∗12 / †63
→ ∗27 / †26

The max-min fair-share of each agent (on the right) and the corresponding
shares are marked with ’∗’. A min-optimal allocation and the corresponding
utilities are marked with ’†’6. In this min-optimal allocation, the third agent
does not get her max-min fair-share (expecting at least 27 but getting only 26).

There are for this instance allocations obeying the max-min fair-share crite-
rion, for example 〈{2, 4}, {1}, {3}〉, but none of them are min-optimal. More-
over, the min-optimal allocation does not provide her proportional fair-share to
agent 3 (26 < 100/3). Hence from Proposition 10, we know that this instance
admits no PFS allocation, and from Propositions 6 and 7, it admits neither
mFS,EF or CEEI allocations.

On the other hand however, such a counter-example has a small chance to
appear in practice: for example, using a uniform generation process similar to
the impartial culture in vote theory (see Section 6), for 3 agents and 4 ob-
jects, only one instance over 3500 is a counter-example similar to Example 7.
This shows that max-min fair-share has a good correlation with the egalitarian
approach.

5Actually a similar result holds if weights are normalized such that uMFS
i is equal for all

agents (and not uPFS
i ).

6This min-optimal allocation is also leximin-optimal. The leximin ordering [30] is a refine-
ment of the min ordering for which a lexicographic comparison of sorted vectors of weigths is
used, instead of comparing their min values.
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5 Restricted cases

In this section we examine the behavior of our criteria – and especially the
max-min fair-share one – in some restricted cases, giving to these criteria an
additional insight. These restrictions concern the agents’ preferences and the
number of agents and objects. The main result here is that for all these restric-
tions (even if some of them are very general), it is always possible to find an
allocation satisfying the max-min fair-share criterion.

5.1 Restricted preferences

5.1.1 0-1 preferences

We first consider the case where the weights are binary, which corresponds to
the MARA version of approval voting. Interestingly, we can prove that an allo-
cation satisfying max-min fair-share can always be found, using a decentralized
protocol where each agent takes in turn (according to a predefined sequence)
one of its preferred (approved, here) objects among the remaining ones. Such a
picking protocol is known as product of sincere choices [10] or elicitation-free se-
quential protocol [8]. Using this protocol with an alternating sequence of agents
always yields an allocation satisfying max-min fair-share (if every agent acts
sincerely):

Proposition 11 (“Approval sharing”). Any add-MARA instance with weights
restricted to 0, 1 belongs to I|MFS.

Proof. In an instance with n agents and m objects, the max-min fair-share of
agent i is b sin c, with si =

∑m
l=1 w(i, l). The following very simple algorithm (a

picking protocol) gives any agent her max-min fair-share :

while ( true )
for i = 1 to n

Allocate to agent i an object l not allocated yet
such that w(i, l) = 1 if any,

otherwise allocate to i any remaining object of weight 0.
If all objects are allocated, exit.

There are exactly bmn c complete passages in the for loop. During each complete
passage, n objects are allocated, one to each agent. During each of the first b sin c
passages at least, agent i receives an object of weight 1.

5.1.2 Identical preferences

When agents give the same object the same weight (thus they have identical
utility functions), our scale of criteria has only two levels : the max-min fair-
share criterion, and the others merged in one.

Proposition 12. If agents have identical preferences (for all i, j, l : w(j, l) =
w(i, l)), then

14



1. there is always an allocation satisfying the max-min fair-share criterion,
and in particular any min-optimal allocation satisfies it ;

2. if preferences are strict (i.e., for any agent, two distinct shares have dif-
ferent utilites), no allocation satisfies the proportional fair-share criterion,
and thus none satisfies the three more demanding criteria ;

3. Let −→π be any admissible allocation. The following five propositions are
equivalent : (i) each agent in −→π gets the same utility ; (ii) −→π � CEEI ;
(iii) −→π � EF ; (iv) −→π � mFS ; (v) −→π � PFS.

Proof. 1. Consider a min-optimal allocation −→π ?. Then for each agent i :

uMFS
i

def
= max−→π ∈F

min
j∈A

ui(πj)

= max−→π ∈F
min
j∈A

uj(πj)

= min
j∈A

uj(π
?
j ) ≤ ui(π?i )

2. Because preferences are strict, for any allocation −→π , the n numbers ui(πi)
are different. One of them at least is strictly smaller than their mean.
3. We prove implications in the order given in the proposition. Let −→π be an
allocation in which agents get the same utility, which is ui(O)/n for agent i.
Consider the following price vector : pl = nw(i, l)/ui(O). Total price is n, and
the price of every share of −→π is exactly 1. So each agent can buy any share
of −→π , and any share that would provide more utility costs necessarily more.
Hence −→π � CEEI. The other three implications follow from the scale of criteria
(Section 3). The last one, closing the cycle (−→π � PFS implies shares of equal
utility) is easily proved.

5.1.3 Same-order preferences

Intuitively, the more similar the agents preferences are, the more likely they
are in conflict, and the harder it will be to satisfy the aforementioned fairness
criteria. This notion of similarity is well captured by the concept of same-
order preferences (SOP for short). Formally, an add-MARA instance satisfies
SOP — we say for short : the instance is SOP — if for all i, l, l′ : l < l′ ⇒
w(i, l) ≥ w(i, l′). In other words, all the agents agree on the same ranking
of objects (object 1 is one of the best, object m is one of the worst), but
can give different weights.7 For any weight function w, we will write w↑ the
function i, l 7→ w(i, σi(l)), where σi is a permutation of J1,mK such that l <
l′ ⇒ w(i, σi(l)) ≥ w(i, σi(l

′)). Obviously, w↑ is a “SOP” version of w. It turns
out that if we can find an allocation satisfying max-min fair-share for a given
SOP add-MARA instance, then we can find one for every permutation derived
from it:

7This property is sometimes known as full-correlation [8].
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Proposition 13. Let 〈A,O, w〉 be an add-MARA instance. Then we have
〈A,O, w↑〉 ∈ I|MFS ⇒ 〈A,O, w〉 ∈ I|MFS.

Proof. We will here once again use the aforementioned idea of sequence of sincere
choices. Let 〈A,O, w〉 be an add-MARA instance, and let −→π ↑ be an allocation
satisfying the max-min fair-share criterion for the SOP instance 〈A,O, w↑〉. Let
S = S1, S2, ...Sm be the sequence of agents defined as follows: Sl is the agent
who receives object l in −→π ↑.

Such a sequence which depends on −→π ↑ always exists because the instance
is SOP, and because each object is given to exactly one agent. As said before,
the sequence S is called a sequence of sincere choices, after [10], which however
uses it in a different way.

The key is to notice that the allocation −→π obtained by the same picking
protocol (with the same sequence) used with the original instance 〈A,O, w〉,
will make every agent at least as well-off as in −→π ↑. To see it, notice that before
step p in the building of −→π , exactly p − 1 objects have been chosen, so the
worst object that agent Sp could have at step p is the object p obtained in
−→π ↑. Consequently, for each agent i and each object of π↑i , there is an object
in πi which is weakly better for i: the utility of i weakly increases from −→π ↑ (in
〈A,O, w↑〉) to −→π (in 〈A,O, w〉).

Since the max-min fair-share of an agent only depends on the set of weights
(not on their ordering), it is the same for the SOP instance and the original
one. Since −→π ↑ � MFS, and −→π makes everyone at least as well-off, we conclude
−→π � MFS.

Because any instance can be considered as a derivation (by permutations of
weights) of a SOP one, this proposition shows that SOP instances are the most
difficult ones as far as the max-min fair-share criterion is concerned.8 So, to
prove that all instances of a given subset satisfy this criterion, we only need to
prove that any SOP instances of that subset satisfies it. In the following, we
will often consider only the SOP instances of the subsets of interest, and hence
the results obtained for them will be valid also for all instances of the subset.

5.1.4 Weights defined by a scoring function

We consider here the case where agents express their preferences using exactly
the same multiset of weights (formally, for all (i, j) ∈ A2, {{wi,l | l ∈ O}} =
{{wj,l | l ∈ O}} where {{}} denotes a multiset). Equivalently we could say that
agents use the same scoring function. A scoring function is simply a weakly
decreasing function g : J1,mK→ R+. It can be used to convert a purely ordinal
expression of preferences into to a numerical one, in the following way. Consider
that each agent ranks strictly the objects from 1 (the most prefered) to m (the
least prefered). If r(i, l) is the rank given to object l by agent i, then the weight
w(i, l) is defined as g(r(i, l)).

8This also seems to be true for more demanding criteria as our experiments show in Section
6.
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This framework, which is standard in social choice, allows to link a purely
ordinal expression of preferences to a numerical one. It is the basis of well-
known procedures in voting theory (plurality, veto, Borda scores for examples).
It has been already considered in fair division of indivisible goods [8] and social
choice [4].

Proposition 14. Any add-MARA instance in which preferences are defined
by the same scoring function is in I|MFS, and any min-optimal allocation sat-
isfies max-min fair-share in this case. The other conclusions (ii) and (iii) of
Proposition 12 are also satisfied.

Proof. By Proposition 13 it is enough to consider SOP instances, which are in
this case instances with identical preferences. Then use Proposition 12.

5.2 Restrictions upon the number of agents and objects

5.2.1 Two agents

The two agents case is particularly interesting because the famous cut-and-
choose game give their max-min fair-share to both agents.

Proposition 15. Any 2-agents add-MARA instance belongs to I|MFS.

Proof. Let −→π such that −→π = argmax−→π ′∈F minj∈A u1(π′j). By definition, π1
and π2 give agent 1 her max-min fair-share. But u2(π1) + u2(π2) = u2(O), so
one of the two shares (suppose π2) is such that u2(π2) ≥ 1

2u2(O) = uPFS
2 . As

uPFS
2 ≥ uMFS

2 (by Proposition 2), u2(π2) ≥ uMFS
2 , hence the allocation 〈π1, π2〉

satisfies the max-min fair-share criterion.
Another pleasant proof : agent 1 cuts, so she will always get her max-min

fair-share. Agent 2 chooses first, so she gets her min-max fair-share, therefore
her max-min fair-share too (by Propositions 2 and 4).

5.2.2 No more objects than agents

If there are strictly less objects than agents, the scale of criteria is reduced to
only one level, and hence is of no help9. The case as many objects as agents
puts in light the min-max fair-share criterion.

Proposition 16. If there are strictly less objects than agents, any allocation
satisfies the max-min fair-share criterion, but none satisfies the other criteria.

If there are as many objects as agents, then

1. any allocation which is a matching (giving to each agent one object) sat-
isfies the max-min fair-share criterion.

2. any allocation satisfying the min-max fair-share criterion is a matching,
envy-free, Pareto-efficient and CEEI.

9The best resort in this case would be a normalized leximin-optimal allocation.
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Proof. Case m < n : in any allocation, one agent at least receives no object,
hence uMFS

i = 0 for all i. As 0 ≤ ui(πi) for all i, each agent gets her max-min
fair-share. Of course no allocation satisfies the proportional fair-share criterion.

Case m = n :
1. We have easily uMFS

i = minl∈O w(i, l), hence each agent receives her max-min
fair-share in a matching.
2. We have also easily umFS

i = maxl∈O w(i, l). In an allocation satisfying
the min-max fair-share criterion each agent receives a prefered object. The
allocation is hence an envy-free matching. It is Pareto-efficient because for an
agent to get strictly more utility, she necessarily has to take another object
from another agent, strictly reducing this agent’s utility. A price of 1 for each
object provides a CEEI allocation, because any increase of utility must be paid
more.

5.2.3 Up to three more objects than agents

We prove that any instance with up to three more objects than agents satisfies
the max-min fair-share criterion. We begin by the case m = n+ 1.

Proposition 17. Any add-MARA instance with n agents and (n + 1) objects
belongs to I|MFS.

Proof. Thanks to Proposition 13, we can restrict to SOP instances. Since ob-
jects n and n+ 1 are the worst ones, it is not difficult to see that all the shares
from allocation 〈{1}{2} . . . {n − 1}{n, n + 1}〉 give to each agent her max-min
fair-share.

To continue with m = n + 2 and m = n + 3, we need first a convenient
definition of the extension of an instance, that is adding p agents and q objects
to a given instance, and an additional notation.

Definition 8. Let I = 〈A,O, w〉 be an add-MARA instance. A (p, q)-extension
of I is an add-MARA instance I+p,+q = 〈A′,O′, w′〉 such that A′ = A ∪ {n +
1, . . . , n+ p}, O′ = O ∪ {m+ 1, . . . ,m+ q}, and w′(i, l) = w(i, l) for all (i, l) ∈
A×O.

Denote by uMFS
i (I) the max-min fair-share of agent i in instance I.

Then we give some preliminary lemmas. The first one shows the behavior
of uMFS

i (I) when k additional agents and objects are added to I.

Lemma 1. Let I = 〈A,O, w〉 be an add-MARA instance. Then for all i ∈ A,
uMFS
i does not strictly increase from I to any (k, k)-extension of I. Formally :
uMFS
i (I+k,+k) ≤ uMFS

i (I) for all integer k > 0.

Proof. Let I be an instance, and I ′ a (1, 1)-extension of it. Start from an
allocation −→π ′ of I ′ that gives her max-min fair-share to agent i in it, that is :

n+1
min
j=1

(ui(π
′
j)) = uMFS

i (I ′) (2)
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Removing from −→π ′ the share containing object m+1 yields a valid (possibly
incomplete) allocation −→π for I. Hence,

n
min
j=1

(ui(πj)) ≤ uMFS
i (I) (3)

Removing a number from a set cannot strictly decrease its minimum, so we
have

n+1
min
j=1

(ui(π
′
j)) ≤

n
min
j=1

(ui(πj)) (4)

By Equations 2 to 4 we conclude

uMFS
i (I ′) ≤ uMFS

i (I) (5)

Iterating the previous result from 1 to k completes the proof.

The next (easy) lemma gives a very simple expression of max-min fair-share,
proportional fair-share and min-max fair-share when all weights are equal.

Lemma 2. Let I be an instance with n agents and m objects, all weights beeing
equal to 1. Then uMFS(I) = bmn c, u

PFS(I) = m
n , umFS(I) = dmn e.

Proof. First equality : m = nbmn c+r = (n−r)bmn c+r(b
m
n c+1) with 0 ≤ r < n.

So in an allocation satisfying the max-min fair-share criterion, n − r agents
receive bmn c and r agents receive bmn c + 1. The second equality is just the
definition of the proportional fair-share. For the third equality, the proof is
similar to the first.

The next lemma gives an upper bound of the max-min fair-share of an agent.

Lemma 3. Let I be an add-MARA instance. For any agent i, we have uMFS
i (I) ≤

bmn cmaxml=1 w(i, l). In particular when m < 2n then uMFS(I) ≤ maxml=1 wl.

Proof. Follows from the first equality of Lemma 2 and the fact that uMFS(I) is
obviously a weakly increasing function of each w(i, l).

We can now use these lemmas to show the following more general result:

Lemma 4. Let I be an add-MARA instance. If I ∈ I|MFS and n ≤ m ≤ 2n
then any (p, p)-extension of I is in I|MFS.

Proof. We prove the lemma for p = 1. The result for p > 1 is obtained by
induction over p.

Take any instance I ′ with n+ 1 agents and m+ 1 objects. We have to prove
that there is an allocation −→π ′ for I ′ such that −→π ′ � MFS.

As explained in the discussion following Proposition 13, we consider SOP
instances, and without loss of generality, we suppose that10 w(i, 1) ≥ w(i, 2).... ≥
w(i,m) ≥ w(i,m+ 1) for all i, 1 ≤ i ≤ n+ 1.

10Actually, for the following demonstration, only the fact that w(i, 1) is greater or equal to
other weights is necessary. But the full hypothesis (SOP instances) is required in the proof
by recurrence for p > 1.
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Restrict I ′ by removing agent n+1 and object 1. We obtain a (n,m)-instance
I which, by hypothesis, has an allocation −→π such that −→π � MFS. Extend it to

−→π ′ = 〈π1, · · · , πn, {1}〉 (6)

(−→π ′ is −→π augmented with a new share built with the object 1 alone). −→π ′
is a valid allocation for I ′. We show now that −→π ′ � MFS. The hypothesis
n ≤ m ≤ 2n is equivalent to bm+1

n+1 c = 1. Hence, by Lemma 3 :

uMFS(I ′) ≤ w1 (7)

proving that agent n+ 1 obtains her max-min fair-share in −→π ′. As for other n
first agents, Lemma 1 says that this is also the case for them in −→π ′ (they get the
same share in I and I ′, hence same value, and their max-min fair share cannot
strictly increase from I to I ′).

Proposition 18. Any add-MARA instance with n agents and (n + 2) objects
belongs to I|MFS.

Proof. This is a direct consequence of Proposition 15 (showing that any instance
with 2 agents and 4 objects belongs to I|MFS), and Lemma 4.

The case with n and n + 3 objects can also be proved using Lemma 4, but
for that we need to prove the base case with 3 agents and 6 objects.

Lemma 5. Any add-MARA instance with 3 agents and 6 objects belongs to
I|MFS.

Proof. As usual, we consider a SOP (3, 6)-instances I ′, and without loss of
generality, we suppose that w(i, 1) ≥ w(i, 2) ≥ w(i, 4) ≥ w(i, 5) ≥ w(i, 6) for all
i. We will show that I ′ belongs to I|MFS by building an allocation −→π ′ such that
−→π ′ � MFS. We consider two subcases.

(i) If for an agent, say agent 3, we have uMFS
3 ≤ w(3, 1), then give the share

(1) to this agent, so she gets her max-min fair share. Remains a (2, 5)-instance
I that belongs to I|MFS by Proposition 15. Hence there exists an allocation −→π
which gives her max-min fair-share to both agents (1) and (2) in I. Extend −→π to
−→π ′ = 〈π1, π2, {1}〉 (−→π ′ is −→π augmented with a new share built with the object
1 alone). −→π ′ is a valid allocation for I ′. Agent 3 gets her max-min fair-share in
I ′, as said before. Agents 1 and 2 get the same share in I and I ′, hence the same
value. By Lemma 1, their max-min fair share cannot strictly increase from I to
I ′, so they also get their max-min fair-share in I ′.

(ii) Otherwise, we have w(i, 1) < uMFS
i and then w(i, l) < uMFS

i for all i and
l. So, any allocation satisfying the max-min fair-share criterion cannot include
a share with a single object, and must have 2 objects in each share. It is not too
difficult to show11 that an allocation satisfying the max-min fair-share criterion
is 〈{1, 6}{2, 5}{3, 4}〉 (up to a permutation). This allocation gives her max-min
fair-share to all agents.

11Let −→π ∗ = 〈{1, 6}{2, 5}{3, 4}〉. Check that, for every allocation −→π with only 2 objects by
share, for every share π∗ ∈ −→π ∗ there is a share π ∈ −→π such that π has less or equal utility
than π∗.
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Proposition 19. Any add-MARA instance with n agents and (n + 3) objects
belongs to I|MFS.

Proof. This is a direct consequence of Lemmas 4 and 5.

6 Experiments

Tables 1 and 2 give some experimental results concerning our scale of criteria.
We generated 1000 couples of random instances, for n, the number of agents,

ranging from 3 to 5, and for m, the number of objects, ranging from 1 to 11. In
each couple of instance, the first is non SOP, the second is the SOP version of the
first. In Table 1, weights are uniformly generated in [0, 1]. In Table 2, weights
are drawn from a Gaussian distribution, mean 0.5 and standard deviation 0.1.

The number on line n,m and column C gives the number of instances, out of
1000, which satisfy the criterion C. The last column is not devoted, as could be
expected, to the criterion CEEI, but to the criterion EFP which means envy-
free and Pareto-efficient. In fact, it is computationally difficult to characterize
exactly a CEEI instance in general (see [26, Section 3]), so in experiments we
replaced CEEI by EFP12.

Several facts can be noticed, which comfort our theoretical results.

• Main result : the scale of properties is really significative, of course when
n ≤ m. The numbers weakly decrease from left to right, and often strictly
decrease, showing that the scale is not trivial.

• SOP instances are more conflicting than non SOP ones, in accordance
with Lemma 13.

• In Table 1 (uniform distribution of weigths) for a fixed number of agents,
instances are less conflict-prone as the number of objects increases : intu-
itively, we get closer to the continuous case.

• In Table 2 (gaussian distribution of weights, mean 0.5, standard deviation
0.1): instances where m is close to a multiple of n are less conflict-prone
than others, which is not very surprising.

• All generated instances belong to I|MFS. This shows that it is actually
very unlikely to find an instance not in I|MFS (at least with uniform and
gaussian generation of weights) even if such instances exist [28].

7 Beyond additive preferences

Even if, as we have seen earlier, it is almost always possible, for a given add-
MARA instance, to find an allocation satisfying the max-min fair-share crite-
rion, things are surprisingly different for more general non-additive preferences.

12We saw in Section 3.5 that EFP is a necessary condition for CEEI when preferences are
strict. We believe that CEEI and EFP are not equivalent in the context of this discrete model.
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Uniform Non SOP instances
n m MFS PFS mFS EF EFP
3 1 1000 0 0 0 0
3 2 1000 0 0 0 0
3 3 1000 618 231 231 231
3 4 1000 821 563 318 318
3 5 1000 829 730 530 477
3 6 1000 991 967 933 890
3 7 1000 1000 999 997 989
3 8 1000 1000 999 997 995
3 9 1000 1000 1000 1000 1000
3 10 1000 1000 1000 1000 1000
3 11 1000 1000 1000 1000 1000
4 1 1000 0 0 0 0
4 2 1000 0 0 0 0
4 3 1000 0 0 0 0
4 4 1000 746 86 86 86
4 5 1000 945 511 130 130
4 6 1000 927 744 217 192
4 7 1000 920 843 530 434
4 8 1000 998 998 978 923
4 9 1000 1000 1000 998 984
4 10 1000 1000 1000 1000 999
4 11 1000 1000 1000 1000 1000
5 1 1000 0 0 0 0
5 2 1000 0 0 0 0
5 3 1000 0 0 0 0
5 4 1000 0 0 0 0
5 5 1000 839 43 43 43
5 6 1000 991 376 38 38
5 7 1000 989 726 73 61
5 8 1000 970 835 178 130
5 9 1000 964 903 561 387
5 10 1000 1000 997 985 953
5 11 1000 1000 1000 1000 998

SOP instances
MFS PFS mFS EF EFP
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 340 2 2 2
1000 652 237 218 218
1000 775 500 374 374
1000 942 780 615 611
1000 990 958 869 831
1000 1000 995 983 965
1000 1000 1000 1000 990
1000 1000 1000 1000 999
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 159 0 0 0
1000 563 2 1 1
1000 809 131 86 86
1000 868 500 241 240
1000 972 751 442 433
1000 1000 952 752 706
1000 1000 999 962 912
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 62 0 0 0
1000 430 0 0 0
1000 764 0 0 0
1000 896 70 29 29
1000 941 449 142 138
1000 987 732 302 286

Table 1: Experimental results with a uniform distribution of weights.
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Gauss Non SOP instances
n m MFS PFS mFS EF EFP

3 1 1000 0 0 0 0
3 2 1000 0 0 0 0
3 3 1000 610 221 221 221
3 4 1000 26 1 0 0
3 5 1000 3 2 1 1
3 6 1000 994 960 915 886
3 7 1000 737 256 41 40
3 8 1000 223 181 153 122
3 9 1000 1000 1000 1000 1000
3 10 1000 998 935 663 624
3 11 1000 873 852 847 782
4 1 1000 0 0 0 0
4 2 1000 0 0 0 0
4 3 1000 0 0 0 0
4 4 1000 740 92 92 92
4 5 1000 82 0 0 0
4 6 1000 2 1 0 0
4 7 1000 0 0 0 0
4 8 1000 999 996 961 918
4 9 1000 993 393 20 16
4 10 1000 622 219 19 13
4 11 1000 268 224 191 120
5 1 1000 0 0 0 0
5 2 1000 0 0 0 0
5 3 1000 0 0 0 0
5 4 1000 0 0 0 0
5 5 1000 843 57 57 57
5 6 1000 254 0 0 0
5 7 1000 8 0 0 0
5 8 1000 1 0 0 0
5 9 1000 2 1 0 0
5 10 1000 1000 1000 994 969
5 11 1000 1000 608 6 6

SOP instances
MFS PFS mFS EF EFP

1000 0 0 0 0
1000 0 0 0 0
1000 2 0 0 0
1000 0 0 0 0
1000 3 2 2 2
1000 647 218 218 218
1000 185 55 45 44
1000 223 151 123 123
1000 999 967 870 839
1000 908 738 653 645
1000 873 847 829 807
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 767 86 86 85
1000 267 21 14 13
1000 114 24 14 13
1000 268 216 157 140
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 2 0 0 0
1000 854 57 57 56
1000 400 13 6 6

Table 2: Experimental results with a Gaussian distribution of weights. Mean =
0.5, standard deviation = 0.1
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The most natural way of relaxing preference additivity while keeping some con-
ciseness is to allow limited synergies (complementarities or substitutabilities)
between objects, which is the exact idea behind k-additive functions originally
introduced in the context of fuzzy measures [18], and also used in the context
of resource allocation [14].

Formally, we consider in this section k-additive multiagent resource alloca-
tion instances (k-add-MARA instances for short), defined as triples 〈A,O, w〉,
where w is now a mapping from A×2O to R such that w(i, π) = 0 for all agent i
and subset π such that |π| > k. In other words, w gives a weight for all agent and
all subset of less than k objects. The utility function is, as before, defined addi-
tively: ui(π) =

∑
π′⊆π w(i, π′). Obviously, 1-additive functions are the additive

functions (so the 1-add-MARA instances are exactly the add-MARA instances
considered earlier, corresponding to the model introduced in Section 2), and thus
forbids any preferential interdependence between objects. A 2-additive function
allows such interdependence: for example, the weight w({1, 2}) stands for the
proper interest of the pair of objects {1, 2} beyond these two individual objects:
if w({1, 2}) > 0, the value of this pair is more important than the intrinsic
value of the two separated objects (which shows that they are complementary);
if w({1, 2}) < 0, they are substitutable.

As soon as we switch from 1-additive to 2-additive functions, finding an
instance not belonging to I|MFS (that is for which no allocation satisfying the
max-min fair-share criterion exists) is not challenging anymore:

Example 8. Let us consider the 2 agents / 4 objects instance defined by the
following weight functions:
- w(1, {1, 2}) = w(1, {3, 4}) = 1
- w(2, {1, 3}) = w(2, {2, 4}) = 1
- w(i, π) = 0 for every other share π.
It is not hard to see that uMFS

i = 1 for both agents, and no allocation giving at
least 1 to both agents exist.

Actually, the problem of determining whether there exists an allocation sat-
isfying max-min fair share (further referred to as [k-Add-MFS-Exist]) is even
hard:

Proposition 20. [k-Add-MFS-Exist] is NP-hard, for k ≥ 2 and n ≥ 3.

Proof. NP-hardness can be proved by reduction from the partition problem
(Problem 2). Let 〈{x1, . . . , xn}, s〉 be an instance of this problem. From this
instance, we create a 3-agents / n+ 4 objects k-add-MARA instance, where the
agents’ preferences are defined as follows:
- for all i, w(i, {l}) = s(xl) and w(i, {l, n + m}) = −3L for all l ∈ J1, nK and
m ∈ J1, 4K ;
- w(1, {n+ 1, n+ 2}) = w(1, {n+ 3, n+ 4}) = L
- w(2, {n+ 1, n+ 3}) = w(2, {n+ 2, n+ 4}) = L
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- w(3, {n+ 1, n+ 4}) = w(3, {n+ 2, n+ 3}) = L
- w(i, π) = 0 for every other share π.

Let us compute the max-min fair share for each agent. Let us consider the
allocation ({1, . . . , n}, {n + 1, n + 2}, {n + 3, n + 4}). The evaluation of these
three shares by agent 1 gives respectively 2L, L, and L. Hence uMFS

1 ≥ L.
Let now −→π be a custom allocation. Three cases are possible. (i) There is

a share πi such that πi ⊇ {l,m}, with l ≤ n and m > n. Then u1(πi) ≤ 0,
(ii) the objects m > n are split into two different shares (say w.l.o.g π1 and π2)
both containing no object from l ≤ n. Then π1 ≤ L or π2 ≤ L. (iii) the objects
m > n only appear in one share (say w.l.o.g π1). In that case, the objects l ≤ n
are split between the two shares π2 and π3. Since the utility function of agent i
is additive on the objects of {1, . . . , n} and that

∑n
l=1 w(1, {l}) = 2L, we have

ui(π2) ≤ L or ui(π3) ≤ L. In cases (i), (ii) and (iii), mini∈A u1(πi) ≤ L. Hence
uMFS
1 = K. The other agents’ case can be treated similarly.

Let −→π be once again a custom allocation. If −→π has a share πi such that
πi ⊇ {l,m}, with l ≤ n and m > n, then as previously ui(πi) ≤ 0 < uMFS

i .
Now let us assume the contrary, and thus suppose there is a share (say w.l.o.g
π1) that only contains objects m > n. Then either u1(π1) = 0, which means
that agent 1 does not receive her max-min fair share, or u1(π1) > 0 and thus
π1 ⊇ {n + 1, n + 2}, or π1 ⊇ {n + 3, n + 4}. In any of the two last cases, we
can easily see that if another share contains objects m > n (hence contains only
this kind of objects, according to our initial assumption), then the resulting
utility for the concerned agent is 0, and hence the allocation will not give her
her max-min fair-share.

Let us suppose then that π2 and π3 only contain objects l ≤ n. −→π gives
agents 2 and 3 their max-min fair share if and only if u2(π2) ≥ L and u3(π3) ≥ L,
which comes down to find a partition of the objects l into 2 subsets of value L,
and hence a partition of X in the initial instance of [Partition].

It can be noticed that Proposition 20 only gives a NP-hardness result, as
it is not known yet whether [k-Add-MFS-Exist] belongs to NP. We can only
say that this problem belongs to ΣP

2 , because it can be solved by the same
non-deterministic algorithm as in the additive case (see end of Section 3.1).

8 Conclusion and future work

In this paper we have introduced five fairness criteria for resource allocation,
two of which being classical, two of which being less well-known, and one being
original. We have shown how these criteria form, in the context of multiagent re-
source allocation with additive preferences, an ordered scale that can be used as
a basis not only for finding satisfactory (fair) allocations, but also for measuring
to which extent it is possible to find some. We have also run some experiments
that give some insights on how instances divide up on this scale of properties,
and finally we have shown that the extension of these criteria to more general
preferences is likely to have quite different properties.
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This work raises many interesting questions, beyond the several open (com-
plexity) problems presented in the paper. Among others, the question of effi-
ciently computing allocations satisfying some criteria is crucial and not trivial,
especially for CEEI (where no efficient complete algorithm is known so far [26]).

From a more theoretical point of view, the question of extending the results
to non-additive problems is worth being further investigated.

Lastly, since four of the five criteria introduced are purely ordinal (PFS is
not), it would be interesting to analyze to which extent our results carry over
to an ordinal setting with separable13 preferences: unlike numerical additivity,
ordinal separability leaves many pairs of allocations incomparable. Hence, even
if the criteria themselves can be directly expressed ordinally, the way they must
be adapted to deal with incomparable pairs is not so clear and deserves further
investigation.

Acknowledgements We thank Ariel Procaccia and members of COST Ac-
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