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Abstract. In fair resource allocation, envy freeness (EF) is one of the
most interesting fairness criteria as it ensures no agent prefers the bundle
of another agent. However, when considering indivisible goods, an EF
allocation may not exist. In this paper, we investigate a new relaxation
of EF consisting in minimizing the Ordered Weighted Average (OWA)
of the envy vector. The idea is to choose the allocation that is fair in the
sense of the distribution of the envy among agents. The OWA aggregator
is a well-known tool to express fairness in multiagent optimization. In
this paper, we focus on fair OWA operators where the weights of the
OWA are decreasing. When an EF allocation exists, minimizing OWA
envy will return this allocation. However, when no EF allocation exists,
one may wonder how fair min OWA envy allocations are.
After defining the model, we show how to formulate the computation
of such a min OWA envy allocation as a Mixed Integer Program. Then,
we investigate the link between the min OWA allocation and other well-
known fairness measures such as max min share and EF up to one good
or to any good. Finally, we run some experiments comparing the per-
formances of our approach with MNW (Max Nash Welfare) on several
criteria such as the percentage of EF up to one good and any good.

Keywords: Social Choice, Multiagent Resource Allocation, Fair Allocation,
Fair Division of Indivisible Goods

1 Introduction

In this paper, we investigate fair division of indivisible goods. In this context,
several approaches have been proposed to model fairness. Amongst these models,
one prominent solution concept is to look for envy-free allocations [12]. In such
allocations, no agent would swap her bundle with the bundle of any other agent.

Envy-freeness is an attractive criterion: the fact that each agent is better off
with her own share than with any other share is a guarantee of social stabil-
ity. Besides, it does not rely on any interpersonal comparability. Unfortunately,
envy-freeness is also a demanding notion as soon as we require all goods to be
allocated, and it is well-known that in many situations, no such allocation exists
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(consider for instance the situation where the number of items to allocate is
strictly less than the number of agents at stake). Hence several relaxations of
envy-freeness have been studied in recent years. Two orthogonal approaches have
been considered. A first possibility is to “forget” some items when comparing the
agents’ shares. This leads to the definition of envy-freeness up to one good [17]
and envy-freeness up to any good [7]. Recently, Amanatidis et al. [3] explored
how different relaxations of envy-freeness relate to each other. Another possible
approach is to relax the Boolean notion of envy and to introduce a quantity of
envy that we seek to minimize. This is the path followed by Lipton et al. [17]
or Endriss et al. [9] for instance. Several approximation algorithms dedicated to
minimize these measures were subsequently designed – see e.g. Nguyen et al. [18].
Of course such approaches always rely on a specific choice to measure the degree
of envy, in particular regarding the aggregation of agents’ envies, which can be
disputed: is it more appropriate to minimize the maximum envy experienced by
some agent in the society, or to minimize the sum of agents’ envies?

In this paper, we elaborate on this idea of minimizing the degree of envy but
seek to offer a broader perspective. More precisely, we explore the possibility
of finding allocations where envy is “fairly balanced” amongst agents. For that
purpose, we start from the notion of individual degree of envy and use a fair
Ordered Weighted Average operator (by “fair”, we mean an OWA where weights
are non-increasing.) to aggregate these individual envies into a collective one,
that we try to minimize. This family of operators contains both the egalitarian
and utilitarian operators mentioned previously. But doing so also sometimes
allows us to draw results valid for the whole family of fair operators. Along
our way, we shall for instance see that no algorithm fairly minimizing envy can
be guaranteed to return an envy-free allocation up to any good, even though
such allocation does exist. More generally, we provide several insights regarding
the behaviour of such fair minimizing operators, comparing their outcomes with
alternative approaches, either analytically or experimentally. Technically, this is
made possible through to the use of linearization techniques which alleviate the
burden of computing these outcomes.

The remainder of this paper is as follows. After giving some preliminary def-
initions in Section 2, we formally introduce our fairness minOWA envy criterion
(Section 3) and we show that OWA minimization problems can be formulated
as linear programs. We then investigate the link between minimizing the OWA
of the envy vector and other fairness notions (Section 4). We thus study fair-
ness guarantees of the minOWA solutions. Finally, we present some experimental
results investigating the fairness of min OWA solutions (Section 5).

2 Model and Definitions

We will consider a classic multiagent resource allocation setting, where a finite
set of objects O = {o1, . . . , om} has to be allocated to a finite set of agents
N = {a1, . . . , an}. In this setting, an allocation is a vector π = 〈π1, . . . , πn〉 of
bundles of objects, such that ∀ai, aj ∈ N with i 6= j : πi ∩ πj = ∅ (preemption:
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a given object cannot be allocated to more than one agent) and
⋃
ai∈N πi = O

(no free-disposal: all the objects are allocated). πi ⊆ O is called agent ai’s share.
The set of all the possible allocations will be denoted P(I).

A crucial aspect of fair division problem is how the agents express their pref-
erences over bundles. Here, we assume that these preferences are numerically ad-
ditive: each agent ai has a utility function ui : 2O → R measuring her satisfaction

ui(πi) when she obtains share πi, which is defined as ui(πi)
def
=

∑
ok∈πi

w(ai, ok),
where w(ai, ok) is the weight given by agent ai to object ok. This assumption,
as restrictive as it may seem, is made by a lot of authors [17, 4, for instance] and
is considered a good compromise between expressivity and conciseness.

Definition 1. An instance of the additive multiagent resource allocation prob-
lem (add-MARA instance for short) I = 〈N ,O, w〉 is a tuple with N and O as
defined above and w : N ×O → R is a mapping with w(ai, ok) being the weight
given by ai to object ok. We will denote by P(I) the set of allocations for I.

In the following, we denote by I the set of all add-MARA instances. Fur-
thermore, different domain restrictions will be of interest: we denote by Ip the
set of add-MARA instances involving only two agents (pairwise instances), and
by Ib the set of add-MARA instances where agents have binary utilities.

Unless stated otherwise, we will only consider MARA instances with com-
mensurable preferences, such that: ∃K ∈ N s.t ∀i ∈ J1, nK,

∑m
j=1 w(ai, oj) = K.

2.1 Envy-free allocations

A prominent fairness notion in multiagent resource allocation is envy-freeness.
Envy-freeness (EF) can be defined as follows:

Definition 2. Let I = 〈N ,O, w〉 be an add-MARA instance and π be an allo-
cation of I. π is envy-free if and only if ∀ai, aj ∈ N , ui(πi) ≥ ui(πj).

In other words, every agent ai weakly prefers her own share to the share of
any other agent aj . In the context of fair division of indivisible goods, this notion
is very demanding and there exists a lot of add-MARA instances for which no
envy-free allocation exists. To relax envy-freeness, a possibility is to introduce a
notion of degree of envy based on pairwise envy [17].

Definition 3. Let I = 〈N ,O, w〉 be an add-MARA instance and π be an allo-
cation of I. The pairwise envy between ai and aj is defined as:

pe(ai, aj ,π)
def
= max{0, ui(πj)− ui(πi)}.

In other words, the pairwise envy between ai and aj is 0 if ai does not envy
aj , and otherwise is equal to the difference between ai’s utility for agent aj ’s
bundle and her actual utility in π. It can be interpreted as how much ai envies
aj ’s bundle.

From that notion of pairwise envy, we can derive a notion of global envy of an
agent, that we define as the maximal pairwise envy that this agent experiences:
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Definition 4. Let I = 〈N ,O, w〉 be an add-MARA instance and π be an al-

location of I. ai’s envy: e(ai,π)
def
= maxaj∈N pe(ai, aj ,π). The vector e(π) =

〈e(a1,π), ..., e(an,π)〉 will be called envy vector of allocation π .

Here, the max operator is rather a standard choice in the context where one seeks
for allocations with bounded envy [17]. Note that an allocation π is envy-free if
and only if e(π) = 〈0, ..., 0〉.

2.2 Weaker notions of envy-freeness

Besides minimizing a degree of envy, different relaxations of the envy-freness
notions have also been proposed to cope with situations where there is no envy-
free solution. Envy-freness up to one good (EF1) [17, 6] is one of the most studied
relaxations. An allocation is said to be envy-free up to one good if, for each
envious agent ai, the envy of ai towards an agent aj can be eliminated by
removing an item from the bundle of aj .

Definition 5. Let I = 〈N ,O, w〉 be an add-MARA instance and π be an allo-
cation of I. π is envy-free up to one good if and only if ∀ai, aj ∈ N , either
ui(πi) ≥ ui(πj) or ∃ok ∈ πj such that ui(πi) ≥ ui(πj\{ok}).

It has been proved that an EF1 allocation always exists and, in the additive
case, can be obtained using a round-robin protocol [7].

Caragiannis et al. [7] proposed another relaxation of the notion of envy-
freeness which is stronger than EF1. An allocation is said to be envy-free up to
any good (EFX) if for all envious agents ai, the envy of ai towards aj can be
eliminated by removing any item from aj ’s bundle.

Definition 6. Let I = 〈N ,O, w〉 be an add-MARA instance and π be an allo-
cation of I. π is envy-free up to any (strictly positively valuated) good if and
only if ∀ai, aj ∈ N , either ui(πi) ≥ ui(πj) or ∀ok ∈ πj for which w(ai, ok) > 0,
ui(πi) ≥ ui(πj\{ok}).

An even more demanding notion called EFX0 [21, 15] differs on the fact that
an agent can forget any object even the ones valued to 0:

Definition 7. Let I = 〈N ,O, w〉 be an add-MARA instance and π be an allo-
cation of I. π is envy-free up to any good if and only if ∀ai, aj ∈ N , either
ui(πi) ≥ ui(πj) or ∀ok ∈ πj, ui(πi) ≥ ui(πj\{ok}).

Clearly, we have EF =⇒ EFX0 =⇒ EFX =⇒ EF1. While an EF1
allocation can be computed in polynomial time, the guarantee of existence of an
EFX allocation remains an open issue in the general settings [7]. The existence
guarantee of an EFX solutions has been proved for few agents (at most 3 agents)
and specific utility functions. For instance it has been proved that an EFX0

allocation always exists for instances with identical valuations and for instances
involving two agents with general and possibly distinct valuations [21], as well
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as for three agents with additive valuations [8]. When the objects have only two
possible valuations, Amanatidis et al. [2] proved that any allocation maximizing
the Nash Social Welfare is EFX0. This result provides a polynomial algorithm
for computing EFX0 allocations in the two-agent setting.

Other notions of fairness have been introduced in the literature. Bouveret
et al. [5] for instance exhibited some connections between widely used notions
among which the max-min share (MMS, also known as I cut you chose). An
allocation is MMS if every agent gets at least her max-min share. As shown by
Bouveret et al. [5], MMS is less demanding than EF and every EF allocation
also satisfies MMS.

Example 1. Let us consider the add-MARA instance with 3 agents and 4 objects:

o1 o2 o3 o4
a1 2∗ 6 1 1

a2 2 5∗ 2 1

a3 1 5 2∗ 2∗

Note that there is no EF allocation in this instance. The squared allocation
π and the starred allocation π′ are both EF1 and EFX. Both allocations satisfy
MMS. Allocation π leads to the envy vector e(π) = 〈0, 3, 2〉 while allocation π′

leads to the envy vector e(π′) = 〈4, 0, 1〉. Both allocations have the same global
envy when considering the sum of the individual envies. However, the envy in
π′ is mainly supported by a1. To promote fairness, it is natural to prefer the
allocations where the envy is balanced among the agents. In this example, π
should be considered as more fair than π′.

Recently, the Nash social welfare (which maximizes the product of utilities)
was celebrated as a particularly good trade-off between efficiency and fairness [7]
because it guarantees to return an EF1 and Pareto-optimal allocation, among
others. Finally, some authors have proposed to explore inequality indices in mul-
tiagent fair division settings [1, 23, 11]. However, this differs from our proposal
since in these approaches inequality is (more classically) evaluated at the level
of utilities, while we apply it to envies, as we detail in the next section.

3 MinOWA Envy

Our approach elaborates on minimizing the degree of envy of the agents while
balancing the envy among the agents as suggested by Lipton et al. [17]. The
general idea would be to look for allocations that minimize this vector of envy
in some sense: the lower this vector is, the less envious the agents are. This
corresponds to a multiobjective optimization problem where each component of
the envy vector is a different objective to minimize.



6 P. Shams et al.

3.1 Fair OWA

There are different ways to tackle this minimization problem, each approach
conveying a different definition of minimization. Our approach, guided by the
egalitarian notion of fairness [22], is to ensure that, while being as low as possible,
the envy is also distributed as equally as possible amongst agents. To this end,
we use a prominent aggregation operator that can convey fairness requirements:
order weighted averages.

Ordered Weighted Averages (OWA) have been introduced by Yager [25] with
the idea to build a family of aggregators that can weight the importance of ob-
jectives (or agents) according to their relative utilities, instead of their identities.
In this way, we can explicitly choose to favour the poorest (or richest) agents,
or to concentrate the importance of the criterion on the middle-class agents.
Formally, the OWA operator is defined as follows:

Definition 8. Let α = 〈α1, . . . , αn〉 be a vector of weights. In the context of
minimization, the ordered weighted average parameterized by α is the function
owaα : x 7→

∑n
i=1 αi × x↓i , where x↓ denotes a permutation of x such that

x↓1 ≥ x
↓
2 ≥ ... ≥ x↓n.

Amongst all OWA, only those giving more weight to the unhappiest agents
can be considered fair in the egalitarian sense. This property can be formalized
as follows. Let x be a vector such that xj ≥ xi (ai is better off than aj) and
let ε be such that 0 ≤ ε ≤ 2(xj − xi). Then, for any non-increasing vector α:
owaα(x) ≤ owaα(〈x1, . . . , xi + ε, . . . , xj − ε, . . . , xn〉).

In other words, such an OWA favours any transfer of wealth from a happier
agent to an unhappier agent. Such a transfer is called a Pigou-Dalton transfer,
and the OWA with non-increasing weight vectors α are called fair OWA. More-
over, we have considered wlog in this paper that the weight vector sums to 1
so we will make no difference between weights 〈1, 1, 1〉 and 〈 13 ,

1
3 ,

1
3 〉. Note that

fair OWA is also referred to as Generalized Gini Index [24] in the literature. In
matching problems [16] and multiagent allocation problems [14], fair OWA has
been applied to the utility vector so as to maximize a global utility function
while reducing inequalities. However, we can note that maximizing the OWA of
the utility vector does not necessarily return an EF allocation even when such
an allocation exists:

Example 2. Consider this add-MARA instance with 3 agents and 4 objects:

o1 o2 o3 o4

a1 1 2∗ 3 4∗

a2 2 2 5∗ 1

a3 4∗ 0 4 2

The squared allocation is the allocation that maximizes the value of the OWA
of the utility vector with weight 〈1, 0, 0〉. We can easily notice that this allocation
is not envy free as a1 envies a2. Moreover, the star allocation is obviously an EF
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one. Note that in the context of maximization, a fair OWA is also defined with
non-increasing weights but by sorting the components by decreasing value.

Since our motivation is to return an EF allocation when there is one and
otherwise minimize the envy while equally distributing it between the agents,
we propose to minimize the fair OWAs of the envy vector.

Definition 9. Let I = 〈N ,O, w〉 be an add-MARA instance and α be a non-
increasing vector. An allocation π̂ is an α-minOWA Envy allocation if:

π̂ ∈ arg min
π∈P(I)

(owaα(e(π))).

It is important to note that a major advantage of this solution is that it always
exists as it is the result of an optimization process. Moreover, this optimization
problem can be modeled as an Integer Linear Program, which will give a way
to compute optimal allocations. Keep also in mind that there can be several
allocations with the same OWA envy value.

Let us now see some helpful properties of fair OWA. Note that we will con-
sider here that we are in a minimization context.

Definition 10. By denoting v↓k the kth biggest component of a given vector v,

the Lorenz vector L of v is defined as L(v) = 〈v↓1 , v
↓
1 + v↓2 , ...,

∑n
i=1 v

↓
i 〉.

Definition 11. Let x and y be two vectors of the same size and xi (respectively
yi) be the ith component of x (respectively y). We say that x Pareto dominates y
iff for every component xi ≤ yi and there is one component xj for which xj < yj
and x strongly Pareto dominates y iff for every component xi < yi.

Definition 12. We say x (strongly) Lorenz dominates y iff L(x) (strongly)
Pareto dominates L(y).

Theorem 1. Perny and Spanjaard 2003
If x Lorenz dominates y then for any non-increasing weight α: owaα(x) ≤
owaα(y). Similarly if x strongly Lorenz dominates y then for any non-increasing
weight α: owaα(x) < owaα(y).

This helpful property is shown in [20]. As (strong) Pareto dominance im-
plies (strong) Lorenz dominance, the same theorem holds with (strong) Pareto
dominance.

By using a linearization introduced by Ogryczak [19] we can model our prob-
lem of minimizing the OWA of the envy vector as a linear program. Moreover
we consider decreasing OWA weights (fair OWA) so α1 ≥ α2.... ≥ αn and we
denote by α′ = 〈α1 − α2, α2 − α3, ..., αn〉. We introduce a set of n×m Boolean
variables zji : z

j
i is 1 iff oj is allocated to ai while rk and bki are the dual variables

(of the LP computing the Lorenz components) and ei the envy of ai.

min owa(e(π)) = min
∑n
k=1 α

′
k(krk +

∑n
i=1 b

k
i )
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rk + bki ≥ ei ∀i, k ∈ J1, nK

ei ≥
∑m
j=1 w(ai, oj)(z

j
h − z

j
i ) ∀i, h ∈ J1, nK∑n

i=1 z
j
i = 1 ∀j ∈ J1,mK
zji ∈ {0, 1} ∀j ∈ J1,mK ∀i ∈ J1, nK
bki ≥ 0, ei ≥ 0 ∀i, k ∈ J1, nK

4 Link with other fairness measures

We focus here on the possible links between the min OWA allocation and other
fairness measures. We recall that if an envy-free allocation exists, it will be re-
turned by the min OWA optimization. For any instance I, we denote by PROP(I)
the set of allocations satisfying PROP ∈ {EF1, EFX,EFX0,MMS}. We also
denote by α-min OWA(I) the set of all min OWA optimal allocation for the
specific weight vector α, and by ∀-min OWA(I) the set of α-min OWA, for all
(fair) weight vectors α.

4.1 Warm-up: n = 2

In the special case where the allocation problem involves only two agents, we
highlight strong connections between min OWA allocations and other fairness
measures (MMS, EF1 and EFX).

Proposition 1. ∀I ∈ Ip : ∀-min OWA(I) ⊆MMS(I) ⊆ EFX(I)

Proof. For add-MARA instances where an envy-free allocation exists, our proof
is straightforward as min OWA returns the EF allocation. It is thus also MMS,
EF1 and EFX.

We now focus on add-MARA instances for which there is no EF allocation.
In the presence of only 2 agents any min OWA allocation π is such that only
one of the two agents is envious. Indeed, if no agent is envious then it means
the add-MARA instance has an envy-free allocation (which is a contradiction).
Similarly, if both agents are envious it means there is an envy-free allocation
(which is again a contradiction) as the agents would just have to exchange their
bundles to obtain that allocation. Consequently, the sorted envy vector will be
of the form (e, 0). Suppose for the sake of contradiction that such an allocation
is not MMS. The agent that is envy-free (let us say w.l.o.g it is a2) obviously has
her max-min share. So, under the assumption that the allocation is not MMS,
a1 does not have her max-min share. It means that there is an allocation π′ such
that min(u1(π′1), u1(π′2)) > u1(π1) and a2 is still not envious (if a2 is envious
in π′, just swap her share with a1’s). Obviously, a1’s pairwise envy for a2 has
decreased in π′ compared to that of π, and a2’s envy is still 0. This contradicts
the fact that π is the optimal min-OWA envy allocation. Finally, it is known [7]
in the two-agents setting that MMS implies EFX, which completes the proof.

However, even though an MMS allocation is EFX, this does not hold for EFX0

even for 2 agents as we can see in Example 3.
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Example 3. Consider this add-MARA instance with 2 agents and 3 objects:

o1 o2 o3
a1 1 0 2

a2 0 1 2

It is easy to see that the squared allocation is MMS as the max-min share of
each agent is 1. Moreover, we can see that this allocation is EFX (a1 can forget
o3) whereas it is not EFX0 (because a1 has to forget o2 which does not make
here becoming envy-free).

However, we show that we can very easily build an EFX0 allocation from an
arbitrary min OWA envy one.

Proposition 2. For any instance I ∈ Ip and for any weight vector ~α: α-
minOWA(I) ∩EFX0(I) 6= ∅. Furthermore, it can be obtained from an arbitrary
α-min-OWA envy optimal allocation in linear time.

Proof. Let us call π an arbitrary min OWA allocation. If π is envy-free then it is
obviously EFX0 and the proof concludes. Note that envy-freeness is checked in
O(1) as we just have to check the values of both variables e1 and e2. Otherwise,
it means that one and exactly one agent is envious, by using a same argument
as in the proof of Proposition 1. W.l.o.g. we consider a1 is the envious agent. We
start from π and transfer to a1 all the objects that she values with utility zero.
The resulting allocation is called π′. We show that π′ is EFX0. a1 still envies a2
in π′ but is EFX by Proposition 1. By transferring all zero-valued objects to her
share, she becomes EFX0 in π′. Now consider a2. If a2 envies a1 in π′ then by
swapping their bundles, we can obtain an envy-free allocation. This contradicts
the fact that π is min-OWA envy optimal. Hence, a2 still does not envy a1 in
π′, and thus is also EFX0 obviously. Since in π′ a2 is still envy-free and the
pairwise envy from a1 to a2 has not changed, π′ is still min-OWA envy optimal.
The complexity is linear in the number of objects since we have to implement
the transfer of zero-valued objects to a1’s bundle.

On Example 3, this means that a1 should receive o2. This adjustment is
inefficient: by construction, it returns an allocation which is Pareto-dominated
by the original min OWA envy optimal allocation. Intuitively, it can be seen as
the price to pay to get EFX0: by assigning those items that the agent does not
value to her, the mechanism offers the strongest possible fairness guarantees.

4.2 General case: n ≥ 3

We now turn to more general settings involving at least 3 agents. Since an
EF1 allocation is guaranteed to exist, we more specifically focus on the relation
between min OWA and EF1. Unfortunately, we notice that in the general case
these two sets can be disjoint, ie. there are instances for which no allocation is
both EF1 and min-OWA, for any weight vector:
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Proposition 3. ∃I ∈ I : EF1(I) ∩ ∀-min OWA(I) = ∅

Proof. Let us consider the add-MARA instance with 4 agents and 5 objects:

o1 o2 o3 o4 o5
a1 20 2 2 2 4

a2 20 2 2 2 4
a3 13 1 1 1 14

a4 0 0 0 0 30

In order to prove the proposition we will show that the squared allocation is
the only min OWA envy allocation (for any given weight vector) and that it
is (obviously) not EF1. First note that as a1 and a2 have similar preferences
the allocation derived from the squared allocation where we swap the bundles
of these agents will be the same in terms of Lorenz envy vector. The squared
allocation has a vector of envy e = 〈0, 14, 14, 0〉 and L(e) = 〈14, 28, 28, 28〉.
First consider the allocations in which a4 does not possess o5. We have e1 =
〈e1, e2, e3, 30〉 and L(e1) = 〈30, L2, L3, L4〉 with L2, L3, L4 being greater than or
equal to 30. e1 is thus strongly Lorenz dominated by e. Let us now consider the
other possible allocations (in which a4 possesses o5): if a3 has o1 instead of a1
then e2 = 〈20, 14, 1, 0〉 and L(e2) = 〈20, 34, 35, 35〉. e2 is thus strongly Lorenz
dominated by e. Finally, we focus on allocations in which a3 has one to three
items from the set of objects {o1, o2, o3}. If a3 has one of these items we have
e3 = 〈0, 16, 13, 0〉 and L(e3) = 〈16, 29, 29, 29〉. If a3 has two of these items we
have e4 = 〈0, 18, 12, 0〉 and L(e4) = 〈18, 30, 30, 30〉. Finally if a3 has all these
items we have e5 = 〈0, 20, 11, 0〉 and L(e5) = 〈20, 31, 31, 31〉. All e3 e4 and e5
are strongly Lorenz dominated by e. As we know that minimizing fair OWA of a
vector is consistent with the Lorenz dominance (see Theorem 1), it means that
if a solution strongly Lorenz dominates another, then its fair OWA value will
be strictly lower (in a minimization problem such as ours) for any non-creasing
weight. We can then conclude that the squared allocation is indeed the only min
OWA envy one and it is not EF1.

However, a significant number of experiments actually suggest that for almost
any instance, some EF1 allocation is also min-OWA, either for the weight vector
〈1, 0, . . . 0〉, or for the weight vector 〈1, 1, . . . 1〉. Moreover, we have a positive
result in the restricted domain where agents have binary utilities.

Proposition 4. ∀I ∈ Ib : EFX0(I) ∩ ∀-min OWA(I) 6= ∅

Proof. First note that if the instance is EF then the min OWA envy alloca-
tion will be EF and thus EF1 and the proof concludes. Hence we will consider
instances that are not EF. As we consider binary utilities, we know thanks to
[8] that an EFX0 allocation always exists. We can easily notice that any such
allocation is such that the envy of each agent is at most 1. Hence, as with the
weight vector 〈1, 0, . . . 0〉 the OWA envy value of an EFX0 allocation is 1 (as we
supposed no EF allocation exists), it is the minimum OWA envy value possible.
It can thus be returned by minimizing the OWA envy value.
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5 Experimental results

We drew some experiments to compare the performances of the allocations ob-
tained by min OWA envy with the Maximization of Nash Welfare. More precisely
we implemented the linearization described in [7] that returns an allocation ap-
proximating MNW but closely enough to keep interesting properties such as
EF1 and Pareto Optimality. As we have seen through this paper the range of
possibilities offered by the fact that OWA is parameterized is interesting. We
will see how three different weights α1 = 〈1, 0 . . . 0〉, α2 = 〈 12 ,

1
4 , . . .

1
2n 〉 and

α3 = 〈1, 1, . . . 1〉 compare to each other. α1 and α3 correspond to respectively
minimize the max envy and the sum of the envies. α2 is somewhere in the middle
of those two extrema with a strictly decreasing weight vector.

All the tests presented in this section have been run on an Intel(R) Core(TM)
i7-2600K CPU with 16GB of RAM and using the Gurobi solver to solve Mixed In-
teger Programs3. We have tested our methods on two types of instances: Spliddit
instances [13] and synthetic instances under uniformly distributed commensu-
rable preferences (that is, for each agent ai and object oj , utilities are drawn
i.i.d. following the uniform distribution on some interval [x, y] and such that the
utilities of each agent sums to 5m).

We evaluate the performances of the OWA envy minimization outcome for
both types of instances through the following criterion: EF, EFX0, EFX, EF1
and Pareto dominance. Tables 1 and 2 present the percentage of min OWA envy
outcomes that satisfy each criterion. We also study how the vector of weights of
the OWA influences the characteristics of the outcomes. The computation time
(in seconds) of each approach is also mentioned. We recall the strong connections
between the 4 first fairness notions as EF =⇒ EFX0 =⇒ EFX =⇒ EF1.
As it can be checked in Tables 1 and 2, the percentage of EF allocations should
always be lower than or equal to the number of EFX0 ones which should be
lower than or equal to the number of EFX allocations and so on.

5.1 Spliddit instances

Our first set of experiments has been performed on real-world data from the fair
division website Spliddit [13]. There is a total of 3535 instances from 2 agents
to 15 agents and up to 93 items. Note that 1849 of these instances involve 3
agents and 6 objects. By running the MIPs minimizing the OWA envy with the
three different weights’ vectors described above with a timeout of 1 minute (after
this duration the best current solution, if it exists, is returned) we were able to
solve all the instances to optimal. The results of these experiments are presented
in Table 1. The first three columns respectively correspond to the results of
minimization of the OWA envy with respectively α1, α2 and α3, while the
fourth column presents the results of the optimization of MNW.

Minimizing the OWA envy provably returns an EF allocation if there exists
one. Hence, among the Spliddit instances 65.4 % are envy-free. Note that only

3 The code is available at https://gitlab.com/MrPyrom/balancing-envy
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Table 1. Performances for minimizing the OWA envy (with weights α1, α2, α3) or
maximizing the Nash Welfare on Spliddit instances

α1 α2 α3 MNW

%EF 65.4 65.4 65.4 57.2
%EFX0 90.0 93.0 92.7 90.9
%EFX 98.5 99.4 99.0 94.9
%EF1 99.4 99.8 99.3 100
%Pareto 77.1 78.7 79.2 100
%EF+PO 45.7 45.6 46.0 57.2
time(s) 3.5*10−3 5.7*10−7 6.9*10−7 1.1*10−6

57.2 % of the allocations returned by MNW are EF which means that for around
8.2 % of the Spliddit instances, an EF allocation exists but MNW failed to return
it. Moreover, without any surprise as Pareto optimality (PO) of the MNW allo-
cations is guaranteed, minimizing OWA envy returns fewer PO allocations than
MNW. However, around slightly less than 80% of the min OWA envy allocations
are PO. It is also guaranteed that MNW returns an EF1 solution. However, we
can observe, for every weight, that more than 99% of the allocations returned
by min OWA envy are EF1. This balances the negative result in Proposition 3.
Moreover, it can be very interestingly observed that the percentage of EFX0 is
greater for α2 and α3 than for MNW. The same holds for the percentage of
EFX but for the 3 weights’ vectors and by a more noticeable margin of around
5%. However, MNW performs slightly better than min OWA when we consider
EF alongside with PO. Finally, we can see that all the optimization programs
run very quickly in average with a slightly longer time for α1.

5.2 Synthetic instances

For each couple (|N |,|O|) from (3, 4) to (10, 12), we generated 100 synthetic add-
MARA instances with uniformly distributed preferences. We then ran the four
optimization methods described above on the generated instances. We considered
such couples of values in order to produce settings where few EF allocations
exist as suggested in [10]. Although it is interesting to consider EF instances
to compare with MNW, minimizing OWA envy is even more relevant when no
EF allocation exists. Due to lack of space, Table 2 presents the results for only
4 couples (n,m) but similar trends can be observed for the other couples of
values. As witnessed for the Spliddit instances, MNW often fails to return an
EF allocation even when there exists one. As shown in Table 2, the number of EF
allocations missed by MNW can be quite important as shown by the gap between
the percentage of EF allocations returned by min OWA envy and the percentage
for MNW. This is exemplified in Table 2 for 2 agents and 5 agents where the
gap is respectively of 16% and 31%. Even more significantly, it turns out that
min OWA outperforms MNW when we consider EF together with PO. Once
again and in an even stronger way than for the Spliddit instances, these results
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heavily balance the result of Proposition 3: in practice the allocations returned
by the min OWA envy were always EF1. Concerning EFX0 and EFX we also
obtained very positive results. Indeed, min OWA envy returns around 10% more
EFX0 and EFX instances than MNW. Note that we confirm Proposition 1 as
we have 100% of EFX allocations when n = 2. Note that we did not adjust
the allocation returned by the min OWA optimization to break ties as discussed
in the proof of Proposition 2. Thus, we get 97% of EFX0 but this percentage
could be even higher. However, these positive results about EF, EFX0 and EFX
come with a price on efficiency as we can see that PO is not guaranteed and the
percentage gets lower as the number of agents increases but is still above 60%
for α2 and α3. This highlights the inherent compromise and tension between
efficiency and fairness. Besides, as it was the case for the Spliddit instances we
can see that the computation is overall quite fast. We can notice that the MNW
computation never surpasses 0.02 seconds whereas for 10 agents, min OWA envy
optimization is slightly faster than a second for α1 and α3 and around 2 seconds
for α2. Finally, we can see that the three different weights considered here lead
to quite similar performances. We can globally notice more encouraging results
for α3 except for EFX. However, keep in mind that the advantage of using a
parameterized function is its rich expressiveness so we could see our method as
a combination of the results of the 3 weights.

Table 2. Performances for minimizing the OWA envy (with weights α1, α2, α3) or
maximizing the Nash Welfare on synthetics instances (as a function of the number of
agents and objects (n,m) (ε ≤ 10−3)).

(2,3) (5,7) (8,10) (10,12)

α1 α2 α3 MNW α1 α2 α3 MNW α1 α2 α3 MNW α1 α2 α3 MNW

%EF 74 74 74 58 48 48 48 17 10 10 10 1 1 1 1 0
%EFX0 97 97 97 88 96 96 96 88 88 86 88 78 72 82 83 80
%EFX 100 100 100 92 97 97 98 91 98 96 93 85 87 95 92 84
%EF1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
%Pareto 100 100 100 100 73 76 72 100 64 66 67 100 51 62 64 100
%EF+PO 74 74 74 58 33 34 32 17 5 6 5 1 1 1 1 0
time(s) ε ε ε ε 0.02 0.02 0.02 0.01 0.1 0.4 0.1 0.04 0.5 2.5 0.7 0.07

6 Conclusion

In this paper, we introduced a new fairness concept following the idea of min-
imizing envy. More particularly, we used an OWA to express fairness in the
distribution of envy between agents. This generalizes several approaches using
various definitions of degree of envies, which can be captured by adequate weight
vector. In practice, we put a special focus on the egalitarian variant (minimiz-
ing the highest envy), the utilitarian variant (minimizing the sum of envies),
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and the compromise consisting of using the fair vector of decreasing weights.
After implementing a MIP to compute min OWA allocations, we unveil several
connections between the min OWA allocation and other famous fairness mea-
sures. In particular, we compare our approach with the alternative relaxations
consisting of seeking “envy-freeness up to some/any good”. Some of our conclu-
sions show that these approaches correspond to very different perspectives: we
show in particular that no algorithm minimizing a fair OWA can ever guarantee
to return an EF1 (and thus nor EFX) allocation. This is however balanced by
the fact that it never occured in our experiments. Indeed, even in the very few
cases for which the min OWA allocation was not EF1 we easily found a weight
for which it was the case. This raises the question of choosing the appropriate
weight vector for example by elicitating it. We left that question open for now.
Indeed, we also ran some experiments to test the performances of our method
and compared it with other allocation protocols. The results are extremely en-
couraging. Our min OWA approaches do very well (in particular regarding the
likelihood to return an EFX allocation, which may be somewhat paradoxical
given our previous remarks) in terms of fairness, both on real Spliddit instances
and randomly generated ones. In comparison, Nash social welfare –despite its
guarantee to return an EF1 allocation– is dominated on that respect, as well as
on the likelihood to return an EF and Pareto optimal allocation.
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