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Abstract

We study the problem of fairly dividing a set of goods amongst a group of agents,
when those agents have preferences that are ordinal relations over alternative bun-
dles of goods (rather than utility functions) and when our knowledge of those pref-
erences is incomplete. The incompleteness of the preferences stems from the fact
that each agent reports their preferences by means of an expression of bounded size
in a compact preference representation language. Specifically, we assume that each
agent only provides a ranking of individual goods (rather than of bundles). In this
context, we consider the algorithmic problem of deciding whether there exists an
allocation that is possibly (or necessarily) envy-free, given the incomplete preference
information available, if in addition some mild economic efficiency criteria need to be
satisfied. We provide simple characterisations, giving rise to simple algorithms, for
some instances of the problem, and computational complexity results, establishing
the intractability of the problem, for others.

1 Introduction

The problem of fairly dividing a set of goods amongst a group of agents has recently started
to receive increased attention in the AI literature [6, 10, 15, and others]. The study of
the computational aspects of fair division, in particular, finds a natural home in AI; and
fair division is immediately relevant to a range of applications in multiagent systems and
electronic commerce.

To define an instance of a fair division problem, we need to specify the type of goods we
want to divide, the nature of the preferences that individual agents hold, and the kind of
fairness criterion we want to apply when searching for a solution. In this paper, we are
concerned with indivisible goods that cannot be shared: each item needs to be allocated
to (at most) one agent in its entirety. This choice renders fair division a combinatorial
optimisation problem.

Regarding preferences, most work in fair division has made the assumption that the pref-
erences of individual agents can be modelled as utility (or valuation) functions, mapping
bundles of goods to a suitable numerical scale. This assumption is technically convenient,
and it is clearly appropriate in the context of applications with a universal currency, ren-
dering preferences interpersonally comparable. On the other hand, from a cognitive point
of view, assuming such cardinal preferences may be questionable, as it requires an agent
to be able to attach a number to every conceivable state of the world. In this paper, we
make instead the (much weaker, and arguably more realistic) assumption that agents have
ordinal preferences, and for the sake of simplicity we assume that these preferences are strict
orders (which is a common assumption in fair division and voting). That is, each agent i
is equipped with a preference relation �i: A �i B expresses that agent i prefers the set of
items A over the set of items B.

1This paper will also be presented at the 19th European Conference on Artificial Intelligence (ECAI-
2010).



The third parameter is the criterion used to define what makes an allocation “fair”.
Restricting attention to ordinal preferences rules out some criteria. For instance, the Rawl-
sian (or egalitarian) approach to fairness ties social welfare to the welfare of the worst-off
agent [16], which presupposes that interpersonal comparison of preferences is possible. In-
stead, we focus on the important criterion of envy-freeness [13]. An allocation is envy-free
if each agent likes the bundle she received at least as much as any of the bundles received
by others. Besides envy-freeness, a secondary criterion we shall be working with is Pareto
efficiency, which also only requires ordinal preferences. An allocation is Pareto efficient if
there is no other allocation making some agents better and no agent worse off.

A challenging aspect of devising methods for fair division with indivisible goods is its
combinatorial nature [9]: the space of possible bundles grows exponentially in the number
of goods. If there are 20 goods, each agent would, in principle, have to rank over one
million bundles. This leads to the following dilemma: either we allow agents to express
any possible preference relation on the set of all subsets of items, and end up with an
exponentially large representation, as in the descending demand procedure of Herreiner and
Puppe [14], which, while of great theoretical interest, is computationally infeasible as soon
as the number of goods is more than a few units; or we restrict the range of preferences
that agents may express. The latter is the path followed by Brams and King [8] and Brams
et al. [7], who address the problem using the following approach: Elicit the preferences Bi
of each agent i over single goods (the assumption is that this is a strict linear order) and
induce an (incomplete) preference order �i over bundles as follows: for two bundles A and
B, infer A �i B if there exists an injective mapping f : (B \ A) → (A \ B) such that
f(a) Bi a for any a ∈ B \ A. That is, �i ranks A above B if a (not necessarily proper)
subset of A pairwise dominates B, i.e., if A is definitely preferred to B given the limited
information (provided in the form of Bi) available—under reasonable assumptions on how
to “lift” preferences from single goods to bundles.2 From a “computational” perspective,
we might say that Brams and coauthors [7, 8] are using Bi as a compact representation of
�i. In fact, their approach coincides precisely with a simple fragment of the language of
conditional importance networks (CI-nets), a compact graphical representation language for
modelling ordinal preference relations that are monotonic [5]. The fragment in question are
the so-called (exhaustive) SCI-nets, which we will define in Section 2.2.

We will model agent preferences using SCI-nets. Each SCI-net induces an incomplete
preference order over bundles, with the intended interpretation that the agent’s true prefer-
ence order is some complete order that is consistent with the known incomplete order. This
requires a nonstandard approach to defining fairness criteria. Here, again, we follow Brams
and King [8] and Brams et al. [7] and define an allocation as being possibly envy-free if it
is envy-free for some set of complete preferences that are consistent with the known incom-
plete preferences; and we say an allocation is necessarily envy-free if it is envy-free under
all possible completions. We define possible and necessary Pareto efficiency accordingly.

The main question we study in this paper is then: Given partially specified agent pref-
erences, modelled in terms of SCI-nets, does there exist an allocation that is possibly (nec-
essarily) envy-free? As the allocation that simply disposes of all goods (i.e., that does not
assign any goods to the agents) is always both possibly and necessarily envy-free, to be in-
teresting, this question needs to be asked under some efficiency requirements. In particular,
we will ask whether there exists such allocations that are complete (i.e., that allocate every
item to some agent) or possibly (necessarily) Pareto efficient.

Some of our results are positive: we are able to provide simple characterisations of
situations in which an allocation of the desired kind exists, and these characterisations

2The problem of lifting preferences over items to sets of items has been studied in depth in social choice
theory [3]. Indeed, pairwise dominance is closely related to the axiom of “(weak) preference dominance”
put forward by Sen in the context of work on formalising freedom of choice [17].



immediately suggest an algorithm for computing such an allocation. Other results are
negative: deciding existence of an allocation of the desired kind (and thus also computing
such an allocation) often turns out to be intractable.

The remainder of the paper is organised as follows. In Section 2 we define the model
of fair division we shall be working with. In particular, this includes the language used
to specify agent preferences and several fairness and efficiency criteria. In Section 3 we
give the main results of this paper; namely, we show that while it is easy to compute
possibly envy-free allocations that are also complete or possibly Pareto efficient, requiring
necessary envy-freeness makes the problem NP-hard. The concluding Section 4 includes a
short discussion of related work. (For lack of space, some proofs are only sketched.)

2 The model

Let A = {1, . . . , n} be a finite set of agents and G = {x1, . . . , xm} be a finite set of goods
(n ≥ 2 and m ≥ 1). An allocation π : A → 2G is a mapping from agents to sets of goods
such that π(i) ∩ π(j) = ∅ for any two distinct agents i, j ∈ A; thus, goods are indivisible.
An allocation π with π(1) ∪ · · · ∪ π(n) = G is called complete.

In this section, we define criteria for identifying fair (or efficient) allocations of goods.
These criteria will be defined in terms of the preferences of the individual agents over the
bundles they receive.

2.1 Basic terminology and notation

A strict partial order is a binary relation that is irreflexive and transitive. A linear order is
a strict partial order that is complete (i.e., X � Y or Y � X whenever X 6= Y ). A binary
relation � on 2G is monotonic if X ⊃ Y implies X � Y . If � (or B) is a binary relation,
then � (or D) represents the reflexive closure of that relation (i.e., X � Y if and only if
X � Y or X = Y ). Given two binary relations R and R′ on 2G , we say that R′ refines R if
R ⊆ R′.

2.2 Preferences: SCI-nets

The preference relation of each agent i ∈ A is assumed to be a linear order �?i over the
bundles (subsets of G) she might receive. However, as argued above, eliciting �?i entirely
would be infeasible; so we do not assume that �?i is fully known to us (or even to the agents
themselves). Instead, for each agent i we are given a strict partial order �i representing our
partial knowledge of �?i , and the true preference of i is some complete refinement of �i. The
strict partial orders �i are generated from expressions of a suitable preference representation
language. In this paper, we focus on the language of SCI-nets, i.e., precondition-free CI-nets
in which all compared sets are singletons [5]. We now introduce SCI-nets;3 for full CI-nets
see [5].

Definition 1 (SCI-nets) An SCI-net N on G is a linear order on G, denoted by BN (or
simply B, when the context is clear). A strict partial order � on 2G complies with N , if
(i) � is monotonic and (ii) S ∪ {x} � S ∪ {y} for any x, y such that x BN y and any
S ⊆ G \{x, y}. The preference relation �N induced by N is the smallest strict partial order
that complies with N .

As discussed earlier, �N is the partial order we obtain when we lift the order BN on G
to an order on 2G by invoking the principles of monotonicity and pairwise dominance, as

3What we call “SCI-nets” here were called “exhaustive SCI-nets” in [5].
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Figure 1: Preference relation induced by SCI-net a B b B c B d. Dotted arcs are obtained
by monotonicity; arcs obtained by transitivity are omitted.

proposed by Brams and coauthors [7, 8]. We can give yet another characterisation of �N , in
terms of a utility function: Given SCI-net N and A ⊆ G, for every k ≤ |A| we denote with
AN(k) the k-most important element of A; i.e., if x ∈ A and #{y ∈ A | y �N x} = k then

AN(k) = x. Given a vector w = (w1, ..., wm) ∈ (R+)m inducing the additive utility function

uw : 2G → R with uw(A) =
∑
xi∈A wi, and SCI-net N = xθ(1) B · · · B xθ(m) (for some

permutation θ of {1, . . . ,m}), we say that w and N are compatible if wθ(1) > · · · > wθ(m).

Proposition 1 (Dominance) Given an SCI-net N and bundles A,B ⊆ G, the following
statements are equivalent:

(1) A �N B
(2) There exists an injective mapping f : (B \A)→ (A \B) such that f(a) BN a for any

a ∈ B \A.
(3) There exists an injective mapping g : B → A such that g(a) DN a for all a ∈ B and

g(a) BN a for some a ∈ B.
(4) Either A ⊃ B, or the following three conditions are satisfied:

• |A| ≥ |B|;
• for every k ≤ |B|, AN(k) DN BN(k);

• there exists a k ≤ |B| such that AN(k) BN BN(k).

(5) For any w compatible with N we have uw(A) > uw(B).

The proof is simple; we omit it due to space constraints.

2.3 Criteria: envy-freeness and efficiency

For the fair division problems we study, each agent i ∈ A provides an SCI-net Ni. This
gives rise to a profile of strict partial orders (�N1

, . . . ,�Nn
). For any such profile (whether

it has been induced by SCI-nets or not), we can ask whether it admits a fair solution.
As our agents are only expressing incomplete preferences, the standard notions of envy-

freeness and efficiency need to be adapted. For any solution concept, we may say that it
is possibly satisfied (if some refinement of the preference profile to a profile of linear orders
satisfies it) or that it is necessarily satisfied (if all such refinements do). The following
definitions are a synthesis of those introduced by Brams and King [8] and Brams et al. [7].4

While the results reported in the sequel apply to scenarios where each agent expresses
her preferences in terms of an SCI-net, we state these definitions independently from the
preference representation language in use.

Definition 2 (Modes of envy-freeness) Given a profile of strict partial orders (�1

, . . . ,�n) on 2G, an allocation π is called

4Brams and coauthors [7, 8] use a different terminology: our necessarily (resp. possibly) envy-free alloca-
tions correspond to their allocations that are not envy-possible (resp. that are not envy-ensuring), and our
necessarily (resp. possibly) Pareto efficient allocations correspond to their Pareto-ensuring (resp. Pareto-
possible) allocations. We believe that applying the standard modalities of “necessary” and “possible” to
basic fairness and efficiency criteria is the most systematic way of defining these notions.



(i) possibly envy-free (PEF) if for every i ∈ A there exists a linear order �?i refining �i
such that π(i) �?i π(j) for all j ∈ A;5 and

(ii) necessarily envy-free (NEF) if for every i ∈ A and every linear order �?i refining �i
we have π(i) �?i π(j) for all j ∈ A.

Next we establish alternative characterisations of PEF and NEF allocations, which are more
“computation-friendly”.

Proposition 2 (PEF and NEF allocations) Given (�1, . . . ,�n),
• π is NEF if and only if for all i, j, we have π(i) �i π(j);
• π is PEF if and only if for all i, j, we have π(j) 6�i π(i).

Proof. The first point is obvious: π is NEF iff for every i and j, and every �?i refining �i we
have π(i) �?i π(j), i.e., iff π(i) �i π(j) holds for every i, j. For the second point, suppose
π(j) �i π(i) for some i, j; then π(j) �?i π(i) holds for any refinement �?i of �i, which
implies that π is not PEF. The converse direction is less immediate, because the condition
Ci: “for all j, π(j) 6�i π(i)” only guarantees that for every i and every j 6= i there exists
an refinement �?ji of �i such that π(i) �?ji π(j). Assume that Ci holds and let the relation
Ri be defined by Ri = [�i ∪{(π(i), B) | B 6= π(i) and B 6�i π(i)}]. We show that Ri is
acyclic. First, suppose there is an X such that XRiX. Then by definition of Ri, X �i X
(X 6= π(i) by definition ofRi), which cannot be the case since�i is a well-defined strict order.
Suppose now that there exists an irreducible cycle X1, . . . , Xq of length at least 2 such that
X1RiX2 . . . RiXqRiXq+1 = X1, and Xj 6= Xk for every 1 ≤ j 6= k ≤ q. From the definition
of Ri, for every k ≤ q we have either Xk �i Xk+1 or (Xk = π(i) and Xk+1 6�i π(i)). Because
�i is acyclic, there is at least one k such that Xk = π(i). Because the cycle is irreducible,
there is at most one k such that Xk = π(i). Therefore, there is exactly one k such that
Xk = π(i); without loss of generality, let k = 1. We have (a) X2 �i π(i) and (b) for every
j 6= 1, Xj �i Xj+1, that is, X1 = π(i)RiX2 �i X3 �i . . . �i Xq �i X1 = π(i). Because
�i is transitive, X2 �i X3 �i . . . �i Xq �i π(i) implies X2 �i π(i), which contradicts (a).
Therefore, Ri is acyclic, and its transitive closure R?i is a strict partial order. Take �?i to be
any linear order refining R?i . Because Ri contains �i, �?i refines �i; and for every j, because
π(j) 6�i π(i), by construction of Ri we have that π(i)Riπ(j), therefore also π(i) �?i π(j). 2

Example 1 Let m = 5, n = 2, N1 = a B b B c B d and N2 = d B c B b B a. Consider
the allocation π defined by π(1) = {a, d} and π(2) = {b, c}. We have {b, c} 6�1 {a, d} and
{a, d} 6�2 {b, c}, therefore π is PEF. However, π is not NEF, but the allocation π′ such that
π′(1) = {a, b} and π′(2) = {c, d} is NEF (hence also PEF).

Recall that for a profile of linear orders (�?1, . . . ,�?n) on 2G , an allocation π′ is said to
Pareto-dominate another allocation π if π′(i) �?i π(i) for all i ∈ A and π′(j) �?j π(j) for
some j ∈ A.

Definition 3 (Modes of dominance) Given a profile of strict partial orders (�1, . . . ,�n)
on 2G and two allocations π and π′,

(i) π′ possibly Pareto-dominates π if π′ Pareto-dominates π for some profile of linear
orders (�?1, . . . ,�?n) refining (�1, . . . ,�n).

(ii) π′ necessarily Pareto-dominates π if π′ Pareto-dominates π for all profiles of linear
orders (�?1, . . . ,�?n) refining (�1, . . . ,�n).

5The usual definition of envy-freeness only requires that each agent should be at least as happy with her
share as with the share of anyone else, i.e., that π(i) �?

i π(j) holds for all i, j ∈ A. Here, π(i) �?
i π(j) and

π(i) �?
i π(j) are equivalent, because π(i) �?

i π(j) is equivalent to π(i) �?
i π(j) or π(i) = π(j), and of course

we have π(i) 6= π(j).



We get characterisations of possible and necessary Pareto dominance that are similar as
those of Proposition 2.

Proposition 3 (Pareto dominance) Given (�1, . . . ,�n),
• π′ necessarily Pareto-dominates π if and only if (a) for all i, we have π′(i) �i π(i) and
(b) for some i, we have π′(i) �i π(i);
• π′ possibly Pareto-dominates π if and only if (c) for all i, we have π(i) 6�i π′(i) and (d)
for some i, we have π(i) 6�i π′(i).

Proof. For the first point: (a) and (b) together clearly imply that π′ necessarily dominates
π. Conversely, assume π′ necessarily dominates π. Then, by definition, π′ Pareto-dominates
π for all profiles of linear orders refining the partial orders. Exchanging the position of the
two universal quantifiers immediately gives (a). Now, suppose that there is no i such that
π′(i) � π(i). Then for each i there is at least one refinement �?i such that π(i) �?i π′(i).
Let P ? = (�?1, ...,�?n). P ? refines (�1, ...,�n), and for P ?, π′ does not Pareto dominate π,
which contradicts the initial assumption, and we are done. The proof for the second point
is similar. 2

Definition 4 (Modes of efficiency) Given a profile of strict partial orders (�1, . . . ,�n)
on 2G, an allocation π is called

(i) possibly Pareto efficient (PPE) if there exists no allocation π′ that necessarily Pareto-
dominates π; and

(ii) necessarily Pareto efficient (NPE) if there exists no allocation π′ that possibly Pareto-
dominates π.

Above concepts naturally extend to the case where preferences are modelled using a repre-
sentation language, such as SCI-nets. For example, given a profile of SCI-nets (N1, . . . ,Nn),
an allocation π is PEF if π is PEF for the profile (�N1

, . . . ,�Nn
).

3 Computing envy-free allocations

In this section, we consider the problem of checking whether, for a given profile of SCI-nets,
there exists an allocation that is (possibly or necessarily) envy-free, and that also satisfies
a secondary efficiency requirement (in particular completeness).

3.1 Possible envy-freeness

We first ask whether a given profile of SCI-nets permits an allocation that is both PEF and
complete. It turns out that there is a very simple characterisation of those profiles that do:
all that matters is the number of distinct goods that are ranked at the top by one of the
agents (in relation to the number of agents and goods). As will become clear in the proof
of this result, the algorithm for computing a complete PEF allocation is also very simple.

Proposition 4 (PEF: general case) If n agents express their preferences over m goods
using SCI-nets and k distinct goods are top-ranked by some agent, then there exists a com-
plete PEF allocation if and only if m ≥ 2n− k.

Proof. First, suppose there are m ≥ 2n − k goods. Executing the following protocol will
result in a PEF allocation of 2n− k of those goods: (1) Go through the agents in ascending
order, ask them to pick their top-ranked item if it is still available and ask them leave the
room if they were able to pick it. (2) Go through the remaining n− k agents in ascending
order and ask them to claim their most preferred item from those still available. (3) Go



through the remaining agents in descending order and ask them to claim their most preferred
item from those still available. The resulting allocation is PEF, because for no agent the
bundle of (one or two) goods(s) she obtained is pairwise dominated by any of the other
bundles: she either is one of the k agents who received their top-ranked item or she was
able to pick her second item before any of the agents preceding her in the first round were
allowed to pick their second item. The remaining goods (if any) can be allocated to any of
the agents; the resulting allocation remains PEF and is furthermore complete.

Second, suppose there are m < 2n− k goods. Then, by the pigeon hole principle, there
must be at least one agent i who receives an item that is not her top-ranked item x̂i and no
further items beyond that. But then i will necessarily envy the agent who does receive x̂i;
thus, the allocation cannot be PEF. 2

Example 2 Let m = 6, n = 4, N1 = a B b B c B d B e B f , N2 = a B d B b B c B e B f ,
N3 = b B a B c B d B f B e and N4 = b B a B c B e B f B d. We have k = 2 and m ≥
2n− k. Therefore, the algorithm returns a complete PEF allocation, namely, if we consider
the agents in the order 1 > 2 > 3 > 4: π(1) = {a}; π(2) = {d, f}; π(3) = {b}; π(4) = {c, e}.
However, if f were unavailable, there would not be any complete PEF allocation.

It is possible to show that Proposition 4 remains true if we require allocations to be PPE
rather than just complete:

Proposition 5 (PPE-PEF: general case) If n agents express their preferences over m
goods using SCI-nets and k distinct goods are top-ranked by some agent, then there exists a
PPE-PEF allocation if and only if m ≥ 2n− k.

Proof. First, any PPE allocation is complete; therefore, if there exists a PPE-PEF
allocation, there also exists a complete PEF allocation. Conversely, if we refine the protocol
given in the proof of Proposition 4 by allowing the last agent in round three to take
all the remaining items at the end, then that protocol returns an allocation that is the
product of sincere choices [8] by the agents for the sequence 1, 2, . . . , n, n, . . . , 1, . . . , 1. By
Proposition 1 of Brams and King [8], any such allocation is PPE. 2

The complexity of determining whether there exists an NPE-PEF allocation is still an open
problem.

3.2 Necessary envy-freeness

Next, we turn attention to the problem of checking whether a NEF allocation exists, given
a profile of SCI-nets. This is a considerably more demanding property than possible envy-
freeness. For instance, it is easy to see that a necessary precondition for the existence of
a complete NEF allocation is that all agents have distinct top-ranked goods (because any
agent not receiving her top-ranked good might envy the agent receiving it, whatever other
goods the two of them may obtain). Another necessary precondition is the following:

Lemma 6 (NEF: necessary condition) If n agents express their preferences over m
goods using SCI-nets and a complete NEF allocation does exist, then m must be a mul-
tiple of n.

Proof. If m is not a multiple of n, then for an allocation to be complete, some agent i
must receive fewer goods than another agent j. But any SCI-net (including that of i) is
consistent with a linear order ranking any bundle of size k above any bundle of size less
than k (for all k). Hence, such an allocation cannot be NEF. 2



If there are as many goods as there are agents (m = n), then checking whether a complete
NEF allocation exists is easy: it does if and only if all agents have distinct top-ranked goods.
The next most simple case in which there is a chance that a complete NEF allocation might
exist is when there are twice as many goods as agents (m = 2n). We now show that checking
whether such an allocation exists (and computing it) is intractable:

Proposition 7 (NEF: general case) If n agents express their preferences over m goods
using SCI-nets, then deciding whether there exists a complete NEF allocation is NP-complete
(even if m = 2n).

Proof. Membership in NP is straightforward from Proposition 2. Hardness is proved by
reduction from [x3c] (exact cover by 3-sets): given a set S of size 3q, and a collection
C = 〈C1, . . . , Cn〉 of subsets of S of size 3, does there exist a subcollection C ′ of C such that
every element of S is present exactly once in C ′?

Without loss of generality, we have n ≥ q. To any instance 〈S,C〉 of [x3c] we associate
the following allocation problem:
• 6n objects: 3n “dummy” objects {d1i , d2i , d3i |i = 1, . . . , n}, 3q “main” objects {mi|i =

1, . . . 3q} and 3(n− q) “auxiliary” objects {oi|i = 1, . . . 3(n− q)}
• 3n agents {ci, c′i, c′′i |i = 1, . . . , n}. ci, c

′
i and c′′i are called agents of type i and if

Ci = {j, k, l}, their preferences are expressed by the following SCI-nets:
ci: d

1
i B d2i B d3i B mj B mk B ml B o1 B o2 B o3 B . . . B o3(n−q)−2 B o3(n−q)−1 B
o3(n−q) B D BM ;

c′i: d
2
i B d3i B d1i B mk B ml B mj B o2 B o3 B o1 B . . . B o3(n−q)−1 B o3(n−q) B
o3(n−q)−2 B D BM ;

c′′i : d3i B d1i B d2i B ml B mj B mk B o3 B o1 B o2 B . . . B o3(n−q) B o3(n−q)−2 B
o3(n−q)−1 B D BM ;

where D (resp. M) means “all other dummy (resp. main) objects in any arbitrary
order”. mj , mk and ml will be called “first-level objects” for ci, c

′
i and c′′i .

Suppose there exists an exact cover C ′ of C. C ′ contains exactly q subsets, therefore C \C ′
contains n − q subsets. Let f : C \ C ′ → {1, . . . , n − q} be an arbitrary bijective mapping.
Define the allocation πC′ as follows:

1. every agent gets her preferred dummy object dji ;
2. if Ci ∈ C ′ then every agent of type i gets her preferred (first-level) main object (we

will call these agents “lucky” ones);
3. if Ci 6∈ C ′, every (unlucky) agent of type i gets an auxiliary object: ci gets o3f(i)−2,
c′i gets o3f(i)−1, and c′′i gets o3f(i).

Let us check that πC′ is a complete allocation. Obviously, every dummy object is allocated
(by point 1 above). Since C ′ is a cover, every main object is allocated as first-level object
for some agent (by point 2 above). Since f is a bijective mapping, every auxiliary object
is allocated (by point 3 above). Every agent gets exactly 2 objects, so no object can be
allocated twice and the allocation is complete.

Now, we check that πC′ is NEF. Since every agent receives her top-ranked object and
another one, then by Proposition 1, checking that a does not necessarily envy b comes down
to checking that π(a)a(2) Ba π(b)a(2) (hence comparing only the ranks of the worst objects in

π(a) and π(b)).
• For each lucky agent a, rank(π(a)a(2)) = 4. Each other agent gets either one main

object or an auxiliary one. In both cases, the rank is obviously worse than 4, hence
preventing a from possibly envying anyone else.

• The worst object received by any unlucky agent a of type i (say w.l.o.g. ci) is her
best one among the triple {o3f(i)−2, o3f(i)−1, o3f(i)}. The worst object received by
another agent of type i (say w.l.o.g. c′i) is another one from the same triple, that is



obviously worse for ci. Hence no agent of type i can envy any other agent of the
same type. Let b be an agent of type j 6= i (lucky or not). b receives her top-ranked
object dkj (k ∈ {1, 2, 3}), which is ranked worse than every auxiliary object for a, hence
preventing a from possibly envying b.

Conversely, assume π is a complete NEF allocation. We first note that in π, every agent re-
ceives exactly two objects, among which her preferred object; therefore, in π the assignment
of all dummy objects is completely determined.

Now, suppose there is an agent a that gets a main object m(a) which is not among her
first-level ones. Let mj be one of her first-level objects. Then some agent b receives both
mj and a dummy object, both ranked higher than m(a) in a’s SCI-net. Hence a possibly
envies b. From this we conclude that in π, the second object received by an agent is either
a first-level object, or an auxiliary object.

Moreover, if an agent of type i (say, ci) receives a first-level object, then the other two
agents of type i must also receive a first-level object, for if it is not the case for one of them,
she gets an auxiliary object and possibly envies ci. Therefore, in π, for every i, either all
agents of type i receive a first-level object, or none.

Finally, define Cπ as the set of all Ci such that all the agents of type i receive a first-level
object. π being complete, every main object must be given. Therefore, Cπ is a cover of S.
Because no main object can be given to two different agents, Cπ is an exact cover of S.

The reduction being polynomial, this proves NP-hardness. 2

Example 2, continued. There is no complete NEF allocation, because m is not a multiple
of n. If any one of the four agents is removed, again there is no complete NEF allocation,
because there are two distinct agents with the same top object. If only agents 1 and 3 are left
in, again it can be checked that there is no complete NEF allocation. If only agents 2 and 3
are left in, then there is a complete NEF allocation, namely π(2) = {a, d, e}, π(3) = {b, c, f}.

Proposition 7 extends to the case of PPE allocations:

Proposition 8 (PPE-NEF: general case) If n agents express their preferences over m
goods using SCI-nets, then deciding whether there exists a PPE-NEF allocation is NP-
complete (even if m = 2n).

Proof. Given a sequence s of n agents, we can compute in polynomial time the allocation πs
that corresponds to the product of sincere choices according to s (which is PPE by Brams
and King’s characterisation [8]), and check in polynomial time that it is NEF. Thus s is a
polynomial certificate for the problem, hence membership in NP.

For NP-hardness we can use the same reduction from [x3c]. Since every PPE allocation
is complete, there is a PPE-NEF allocation only if there is a complete NEF allocation,
hence only if there is an exact cover. Conversely, assume that there is an exact cover. Then
the complete and NEF allocation obtained in the proof of Proposition 7 is also PPE by
Brams and King’s characterisation [8], since it is obtained by a sequence of sincere choices
by agents (all the agents in sequence in the first round, then all the lucky agents, and
finally all the unlucky agents). 2

The hardness part of the proofs above extends to the case of NPE allocations (but we do
not know whether the problem is still in NP).

Proposition 9 (NPE-NEF: general case) If n agents express their preferences over m
goods using SCI-nets, then deciding whether there exists an NPE-NEF allocation is NP-hard
(even if m = 2n).



Proof sketch. The idea of the proof (only sketched due to space constraints) is based on
the same reduction from [x3c]: there is an NPE-NEF allocation only if there is a complete
NEF allocation (since every NPE allocation is complete), hence only if there is an exact
cover. Conversely, if there is an exact cover C ′, we can prove by contradiction that the
allocation πC′ is NPE. 2

In the special case of allocation problems with just two agents, a complete NEF allocation
can be computed in polynomial time:

Proposition 10 (NEF: two agents) If there are only two agents and both express their
preferences using SCI-nets, then deciding whether there exists a complete NEF allocation is
in P.

We assume w.l.o.g. that the number of objects is even (m = 2q), for if not we know there
cannot be any complete NEF allocation. We have an exact characterisation of NEF alloca-
tions:

Lemma 11 Let n = 2 and π a complete allocation. π is NEF if and only if for every i = 1, 2
and every k = 1, . . . , q, π gives agent i at least k of her 2k − 1 most preferred objects.

Proof. W.l.o.g., let the preference relation of agent 1 be given by x1 B1 x2 B1 . . . B1 x2q.
Assume that (1) for every i = 1, 2 and every k = 1, . . . , q, π gives agent i at least k among

{x1, . . . , x2k−1}. Let I = {i, xi ∈ π(1)} and J = Ī = {i, xi ∈ π(2)}. Let I = {i1, . . . , iq}
and J = {j1, . . . , jq} with i1 < . . . < iq and j1 < . . . < jq. Let f be the following one-to-one
mapping from I to J : for every k = 1, . . . , q, f(ik) = jk. For every k ≤ q, because of (1),
we have that ik ≤ 2k − 1. Now, since I ∩ J = ∅, J ∩ {1, . . . , 2k − 1} contains at most k − 1
elements, therefore jk ≥ 2k, which implies ik < jk and xik B1 xjk . Thus f is a one-to-one
mapping from I to J such that for every i ∈ I, agent 1 prefers xi to xf(i). Symmetrically,
we can build a one-to-one mapping g from J to I such that for every j ∈ J , agent 2 prefers
xj to xg(j). This implies that π is NEF.

Reciprocally, assume there exists a k ≤ q such that π gives agent 1 at most k−1 objects
among {x1, . . . , x2k−1}. Then π gives agent 2 at least k objects among {x1, . . . , x2k−1}.
This implies that for any one-to-one mapping f from π(1) to π(2), there is some i ≤ k such
that xf(i) B1 xi, therefore π is not NEF. Symmetrically, if there exists a k ≤ q such that π
gives agent 2 at most k−1 objects among her 2k−1 preferred objects, then π is not NEF. 2

Proof (Proposition 10). Let the preference relation of agent 1 be, w.l.o.g., x1 B1 x2 B1

. . . B1 x2q. From that SCI-net, we build the flow network shown in Figure 2 (edge labels
x/y correspond to the edge lower bound x and capacity y).
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Figure 2: The flow network for one agent.

We build the same flow network
for agent a2 (nodes ak1 are now called
ak2) and identify, between the two
networks, the nodes corresponding to
the same objects, the source s, and
the sink t.

We claim (but do not show due to
lack of space) that there is an alloca-
tion π satisfying the condition stated
in Lemma 11 if and only if there is a
feasible flow of value p in the latter
network.



The problem of finding a feasible flow in a network with lower bounds as well as ca-
pacities is known as the circulation problem and is known to be solvable in (deterministic)
polynomial-time [12]. Hence the problem of deciding whether there exists a complete NEF
allocation for a problem with two agents is in P. 2

4 Conclusion and related work

We have studied the problem of computing envy-free allocations of indivisible goods, when
agents have ordinal preferences over bundles of goods and when we only know their prefer-
ences over single items with certainty. Building on work from the (“non-computational”) fair
division literature, in particular the contributions by Brams et al. [7, 8], we have proposed
a framework in which to study such questions, we have provided a number of alternative
characterisations of the central concepts involved, and we have analysed the computational
complexity of computing allocations of the desired kind.

We have been able to show that computing an allocation that is possibly envy-free is
easy (whether paired with a requirement for completeness or possible Pareto efficiency).
We have also been able to show that computing necessarily envy-free allocations is NP-hard
(whatever the secondary efficiency requirement); only for problems with just two agents there
is a polynomial (but non-trivial) algorithm. The complexity of finding envy-free allocation
that are necessarily Pareto efficient is not fully understood at this stage. In particular, it
is conceivable that deciding the existence of allocations that are both necessarily envy-free
and necessarily Pareto efficient might not even be in NP; we leave the full analysis of this
question to future work.

Future work should also seek to extend our results to nonstrict SCI-nets, where indif-
ference between single goods is allowed. Problems that are still easy with strict SCI-nets,
such as the existence of a complete PEF allocation, could conceivably become NP-complete.
Intuitively, the more indifferences the agents express, the more complete the preference re-
lations and the closer the notions of possible and necessary envy-freeness, which means that
possible envy-freeness will be harder to guarantee.

Our work is part of a growing literature on computational aspects of fair division. In
particular, complexity aspects of envy-freeness have been studied, for example in the works
of Lipton et al. [15] and de Keijzer et al. [11], who address the problem of finding envy-free
and complete (resp. Pareto efficient) allocations, when the agents have numerical additive
preferences. Bouveret and Lang [6] also address the same problem, for various notions of
efficiency, in a context where the agents have utilities expressed in compact form. However,
none of these computational works concerns ordinal preferences, and none have considered
possible or necessary satisfaction of fairness criteria. There is also a related stream of works
on the Santa Claus problem, consisting in computing maxmin fair allocations (see e.g.,
Bansal and Sviridenko [2], Bezáková and Dani [4], Asadpour and Saberi [1]). These works
encode fairness by an egalitarian collective utility function and do not consider envy-freeness.
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