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Abstract

We define a family of rules for dividing m indivisible goods among agents, parameterized by a
scoring vector and a social welfare aggregation function. We assume that agents’ preferences
over sets of goods are additive, but that the input is ordinal: each agent simply ranks single
goods. Similarly to (positional) scoring rules in voting, a scoring vector s = (s1, . . . ,sm) consists
of m nonincreasing nonnegative weights, where si is the score of a good assigned to an agent
who ranks it in position i. The global score of an allocation for an agent is the sum of the scores
of the goods assigned to her. The social welfare of an allocation is the aggregation of the scores
of all agents, for some aggregation function ? such as, typically, + or min. The rule associated
with s and ? maps a profile to (one of) the allocation(s) maximizing social welfare. After
defining this family of rules, and focusing on some key examples, we investigate some of the
social-choice-theoretic properties of this family of rules, such as various kinds of monotonicity,
separability, envy-freeness, and Pareto efficiency. Then we focus on the computation and
approximation of winning allocations.

1 Introduction
Fair division of a divisible good has put forth an important literature about specific procedures,
either centralized [17] or decentralized [9]. Fair division of a set of indivisible goods has, perhaps
surprisingly, been mainly addressed by looking for allocations that satisfy a series of properties (such
as equity or envy-freeness) and less often by defining specific allocation rules. A notable exception is
a series of papers that assume that each agent values each good by a positive number, the utility of an
agent is the sum of the values of the goods assigned to her, and the resulting allocation maximizes
social welfare; in particular, the Santa Claus problem [2] considers egalitarian social welfare, which
maximizes the utility of the least happy agent. A problem with these rules is that they strongly rely
on the assumption that the input is numerical. Now, as widely discussed in social choice, numerical
inputs have the strong disadvantage that they suppose that interpersonal preferences are comparable.
Moreover, from a practical designer point of view, eliciting numerical preferences is not easy: in
contexts where money does not play any role, agents often feel more at ease expressing rankings than
numerical utilities.

These are the main reasons why social choice – at least its subfield focusing on voting – usually
assumes that preferences are expressed ordinally. Surprisingly, while voting rules defined from
ordinal preferences have been addressed in hundreds of research articles, we can find only a few such
papers in fair division (with the notable exception of matching, discussed below). Brams, Edelman,
and Fishburn [6] assume that agents rank single goods and have additively separable preferences;
they define a Borda-optimal allocation to be one that maximizes egalitarian social welfare, where
the utility of an agent is the sum of the Borda scores of the objects assigned to her, and where the
Borda score of object gi for agent j ranges from 1 (when gi is j’s least preferred object) to m (when
gi is j’s most preferred object). Unlike Brams et al. [6], Herreiner and Puppe [15] assume that agents
should express rankings over subsets of goods, which, in the worst case, requires agents to express an
exponentially large input, which should be avoided for obvious reasons.

One setting where it is common to use ordinal inputs is two-sided matching. But there, only one
item is assigned to each agent, making this a rather different problem. This remark allows us to see
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fair division rules defined from ordinal inputs as a one-to-many extension of matching mechanisms.
Examples of practical situations when one has to assign not a single, but several (sometimes many)
items to each agent are common, and expressing quantitative utilities is not always feasible in such
cases: composition of sport teams, divorce settlement, exploitation of Earth observation satellites
(see [9] for more examples).

We start by generalizing Borda-optimal allocations [6] to arbitrary scoring vectors and aggregation
functions. Beyond Borda, the scoring vectors we consider are k-approval (the first k objects get
score 1 and all others get 0), lexicographicity (an item ranked in position k counts more than the
sum of all objects ranked in positions k+1 to m), and quasi-indifference (for short, QI: all objects
have roughly the same score, up to small differences). As for aggregation functions, we focus on
utilitarianism (?=+) and egalitarianism (?= min, as well as ?= leximin, which in a strict sense is
not an aggregation function). In Section 2, we define these allocation rules (we consider both resolute
rules and irresolute rules), and focus on a few particular cases. Section 3 is devoted to axiomatic
properties. While the properties of voting rules have been studied extensively, this is much less the
case for fair allocation of indivisible goods. Perhaps the most closely related research is [12] who
study the axiomatic property of multiwinner voting rules, with a focus on positional scoring rules,
while the relationship between multiwinner rules and resource allocation is addressed in [19].

In Section 3.1, we consider separability, which, roughly, says that if we partition the set of agents
into two subsets, A1 and A2, where Ai collectively gets the set Gi of goods under an optimal allocation
π , and if we then consider the allocation problem restricted to Ai and Gi, then the agents in Ai will
get the same set Gi of goods as in π . Section 3.2 considers monotonicity: if agent i gets good g
under the optimal allocation π , and if the rank of g is raised in i’s ranking with everything else being
unchanged, will i still get g? In Section 3.3, we look at two other forms of monotonicity, named
object monotonicity (if some good is added, will the new allocation make all agents at least as happy
as before?) and duplication monotonicity (which is also related to “cloning” agents). Finally, in
Section 3.4, we consider various consistency and compatibility properties. In Section 4, we focus
on the complexity of winner determination for a few key combinations of a scoring vector and an
aggregation function, considering both decision and functional problems. In Section 5, we give
several approximation results, some of which make use of picking sequences. Section 6 discusses
some open questions for future research.

2 Scoring Allocation Rules
Let N = {1, . . . ,n} be a set of agents and G = {g1, . . . ,gm} a set of indivisible goods (we will use
the terms good, item, and object as synonyms). An allocation is a partition π = (π1, . . . ,πn), where
πi ⊆ G is the bundle of goods assigned to agent i. We say that allocation π gives gi to j if gi ∈ π j.

In the general case, to compute an optimal allocation (for some notion of optimality) we would
need, for every agent, her ranking over all subsets of G. As listing all (or a significant part of) the
subsets of G would be infeasible in practice, we now make a crucial assumption: agents rank only
single objects. This assumption is not without loss of generality, and has important consequences;
in particular, it will not be possible for agents to express preferential dependencies between objects.
Under this assumption, a singleton-based profile P = (>1, . . . ,>n) is a collection of n rankings
(i.e. linear orders) over G, and a (singleton-based) allocation rule (respectively, an allocation
correspondence) maps any profile to an allocation (respectively, a nonempty subset of allocations).
For any ranking > (respectively, profile P) over G, and any subset G′ ⊂ G, we will write >|G′
(respectively, P|G′) to denote the restriction of > (respectively, P) to G′. Similarly, we denote the
restriction of P to any subset N′ ⊂ N by P|N′ .

We now define a family of allocation rules that more or less corresponds to the family of scoring
rules in voting (see, e.g., [7]).
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Definition 1 A scoring vector is a vector s = (s1, . . . ,sm) of real numbers such that s1 ≥ ·· · ≥ sm ≥ 0
and s1 > 0. Given a preference ranking > over G and g ∈ G, let rank(g,>) ∈ {1, . . . ,m} denote the
rank of g under >. The utility function over 2G induced by the ranking > on G and the scoring vector
s is for each bundle X ⊆ G defined by u>,s(X) = ∑g∈X srank(g,>).

A strictly decreasing scoring vector s satisfies si > si+1 for each i < m. A scoring vector is only
defined for a fixed number of objects. To deal with a variable number of objects, we introduce the
notion of extended scoring vector, as a function mapping each integer m to a scoring vector s(m) of
m elements. We consider the following specific extended scoring vectors:

• Borda scoring: borda = m 7→ (m,m−1, . . . ,1),1

• lexicographic scoring: lex = m 7→ (2m−1,2m−2, . . . ,1),

• quasi-indifference for some extended scoring vector s: s-qi=m 7→ (1+s1(m)/M, . . . ,1+sm(m)/M),
with M� m ·max{s1(m), . . . ,sm(m)}= m · s1(m), where M is an arbitrary and large integer.

• k-approval: k-app = m 7→ (1, . . . ,1,0, . . . ,0), where the first k entries are ones and all remaining
entries are zero.

In the following, we will often abuse notation and use scoring vectors and extended scoring vectors
interchangeably, and omit the parameter m when the context is clear.

Note that quasi-indifference makes sense for settings where all agents should get the same number
of objects (plus/minus one). An example of quasi-indifference scoring vector would be the one
proposed by Bouveret and Lang [5], namely borda-qi = (1+m/M,1+ (m−1)/M, . . . ,1+ 1/M).

For example, let G = {a,b,c} be a set of three goods and let two agents have the following
preference profile: (a >1 b >1 c, b >2 c >2 a). Let π = ({a},{b,c}). Then, for the Borda scoring
vector, agent 1’s bundle {a} has value 3 and agent 2’s bundle {b,c} has value 3+2 = 5.

It is important to note that we do not claim that these numbers actually coincide, or are even
close to, the agents’ actual utilities (although, in some specific domains, scoring vectors could be
learned from experimental data). But this is the price to pay for defining rules from an ordinal input
(see the Introduction for the benefits of ordinal inputs). This tradeoff is very common in voting
theory: the well-studied family of scoring rules in voting theory (including the Borda rule) proceeds
exactly the same way; voters rank alternatives, and the ranks are then mapped to scores; the winning
alternatives are those that maximize the sum of scores. If we aim at maximizing actual social welfare,
then we have to elicit the voters’ (numerical) utilities rather than just asking them to rank objects.
Caragiannis and Procaccia [10] analyze this ordinal-cardinal tradeoff in voting and show that the
induced distortion is generally quite low. A reviewer pointed out that this approach also can be seen
as optimizing the external perception of fairness or welfare.

The individual utilities are then aggregated using a monotonic, symmetric aggregation function
that is to be maximized. The three we will use here are among the most obvious ones: utilitarianism
(sum) and two versions of egalitarianism (min and leximin). Leximin refers to the (strict) lexicographic
preorder over utility vectors whose components have been preordered nondecreasingly. Formally,
for x = (x1, . . . ,xn), let x′ = (x′1, . . . ,x

′
n) denote some vector that results from x by rearranging the

components of x nondecreasingly, and define x <leximin y if and only if there is some i, 0 ≤ i < n,
such that x′j = y′j for all j, 1 ≤ j ≤ i, and x′i+1 < y′i+1, and x ≤leximin y means x <leximin y or x = y.
Let leximin denote the maximum on a set of utility vectors according to ≤leximin. For each scoring
vector s, define three allocation correspondences:

• Fs,+(P) = argmaxπ ∑1≤i≤n u>i,s(πi),

1Note that the usual definition of the Borda scoring vector in voting is (m−1,m−2, . . . ,1,0). Here, together with [6] we
fix the score of the bottom-rank object to 1, meaning that getting it is better than nothing. For scoring voting rules, a translation
of the scoring vector has obviously no impact on the winner(s); for allocation rules, however, it does. See Example 2.
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• Fs,min(P) = argmaxπ min1≤i≤n{u>i,s(πi)}, and

• Fs,leximin(P) = argleximinπ(u>1,s(π1), . . . ,u>n,s(πn)),

where P = (>1, . . . ,>n) is a profile and π = (π1, . . . ,πn) an allocation. Whenever we write Fs,?, we
mean any one of Fs,+, Fs,min, and Fs,leximin.

Example 2 For n = 3 agents and m = 4 goods, G = {a,b,c,d}, let P = (c >1 b >1 a >1 d, c >2
a >2 b >2 d, b >3 d >3 c >3 a) = (cbad, cabd, bdca). Then, F(4,3,2,1),leximin(P) = {(c,ad,b)} and
F(3,2,1,0),leximin(P) = {(c,a,bd)}. (From now on, we sometimes omit stating “>i” explicitly in the
preferences, and parentheses and commas in allocations.)

Tie-breaking: Similarly as in voting theory, an allocation rule is defined as the composition of an
allocation correspondence and a tie-breaking mechanism, which breaks ties between allocations. One
particular type of deterministic tie-breaking mechanism consists in defining it from a linear order >T

over all allocations,2 or, when N and G are not both fixed, a collection of linear orders >N,G
T (which

we still denote by >T ) for all possible sets of agents and goods, N and G. We write π ≥T π ′ for
(π >T π ′ or π = π ′). As in voting theory, if the output of a correspondence F(P) is not a singleton,
then the most prioritary allocation in F(P) is selected: FT (P) = (T ◦F)(P) = max(>T ,F(P)).

We do not make any assumption as to how this tie-breaking relation is defined; our results hold
independently of that.

One may also wonder whether it is possible to define an anonymous tie-breaking mechanism,
as is common in voting. Formally, a tie-breaking mechanism >T is anonymous if and only if for
any permutation σ over N and any pair of allocations (π,π ′), we have π >T π ′⇔ σ(π)>T σ(π ′),
where σ(π) denotes the version of π where all shares have been permuted according to σ . In fact,
the answer is negative (we omit the easy proof): There is no deterministic anonymous tie-breaking
mechanism.

3 Axiomatic Properties
The properties we study in the paper are primarily defined for deterministic rules. Some of them
will be immediately generalizable for correspondences, and in that case we’ll also discuss whether
or not they hold for correspondences. However, others do not generalize in a straightforward way
to correspondences.3 For these properties, we will leave the study of whether they hold for scoring
resource allocation correspondences for further research.

3.1 Separability
Slightly reformulating Thomson [20], an allocation rule is consistent (we prefer to choose the
terminology “separable”) if for any allocation problem and any allocation π selected by the rule,
the allocation rule chooses the same allocation regardless of whether π is restricted to a subgroup
of agents or when reapplying the rule to a “reduced problem” obtained by imagining the departure
of any subgroup of the agents with their share. As the definition generalizes easily to allocation
correspondences, we define it for both.

2This choice comes with a loss of generality, as there are tie-breaking mechanisms that are not defined this way (we thank
a reviewer for this remark). Also, we rule out the possibility of randomly breaking ties.

3This is the case for all properties expressing that an agent prefers a set of allocations to another set of allocations (and
applies, e.g., to object monotonicity); for these properties there is not a unique way of generalizing the property, unlike in
voting where this is well-known, e.g., for strategy-proofness.
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Definition 3 Let P = (>1, . . . ,>n) be a profile over a set G of goods and consider any partition
of the set N of agents into two sets, N1 and N2, i.e., N1 ∪N2 = {1, . . . ,n} and N1 ∩N2 = /0. Let
π = (π1, . . . ,πn) and for j ∈ {1,2}, let G j =

⋃
i∈N j πi. An allocation rule F satisfies separability if

for each P and π , F(P|N1,G1) = π1 and F(P|N2,G2) = π2, where π i denotes the restriction of π to Ni

and Gi. An allocation correspondence F satisfies separability if for each P and π , π ∈ F(P) if and
only if π1 ∈ F(P|N1,G1) and π2 ∈ F(P|N2,G2). Also, we say that a tie-breaking priority T is separable
if π1 ≥T π ′1 and π2 ≥T π ′2 implies π ≥T π ′.

Unfortunately, it looks like almost all our rules violate separability. We give a counterexample
that works for many choices of (s,?).

Example 4 Let m = 9, n = 3, ? ∈ {+,min, leximin}, and s be a strictly decreasing vector. Con-
sider the preference profile P = (g1g4g3g6g8g7g2g5g9, g2g5g1g8g7g3g4g6g9, g3g6g1g2g9g4g5g7g8).
Fs,?(P) consists of the unique allocation π = (g1g4g8, g2g5g7, g3g6g9) for ? ∈ {min, leximin},
and Fs,+(P) consists of the unique allocation π ′ = (g1g4,g2g5g7g8,g3g6g9). The restriction of
P to agents {1,2} and goods {g1,g2,g4,g5,g7,g8} is P′ = (g1g4g8g7g2g5, g2g5g1g8g7g4). For
? ∈ {min, leximin}, Fs,?(P′) consists of the unique allocation (g1g4g7, g2g5g8) 6= (g1g4g8, g2g5g7),
and Fs,+(P′) consists of the unique allocation (g1g4g7g8,g2g5) 6= (g1g4,g2g5g7g8).

We conjecture that (perhaps under mild conditions on s and ?), no positional scoring allocation
rule is separable.

3.2 Monotonocity
The monotonicity properties below state that if an agent ranks a received good higher, all else being
equal, then this agent does not lose this good (monotonicity) or still receives the same bundle (global
monotonicity).

Definition 5 An allocation rule F is monotonic if for every profile P, agent i, and good g, if F(P)
gives g to i, then for every profile P′ resulting from P by agent i ranking g higher, leaving everything
else (i.e., the relative ranks of all other objects in i’s ranking and the rankings of all other agents)
unchanged, it holds that F(P′) gives g to i. F is globally monotonic if for every profile P, agent i,
and good g, if F(P) gives g to i, then for every profile P′ resulting from P by agent i ranking g higher,
all else being equal, we have F(P′)i = F(P)i.

Clearly, global monotonicity implies monotonicity. These definitions extend to correspondences,
but not in a unique way; therefore, we do not consider these extensions in the paper.

Theorem 6 FT
s,? is monotonic for every scoring vector s and aggregation function ? (and tie-breaking

priority T ).

The proof of Theorem 6 does not establish global monotonicity of FT
s,?; indeed, π = FT

s,?(P) does
not imply π = FT

s,?(P
′) in general. We have the following result.

Proposition 7 Let T be a separable tie-breaking priority. For each m ≥ 3 and for each strictly
decreasing scoring vector s = (s1, . . . ,sm), allocation rule FT

s,+ is not globally monotonic.

In order to show that FT
s,min and FT

s,leximin do not satisfy global monotonicity, the approach of
computing a winning allocation and showing that this allocation is not optimal for the modified
profile seems to fail. This is related to the fact that winner determination for both problems is
hard and “simple” profiles with (nearly) unique winning allocations do not seem to serve well as
counterexamples. Instead, we apply a utility-bounding approach.
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Theorem 8 For each m≥ 7 and for each strictly decreasing scoring vector s = (s1, . . . ,sm) satisfying,
s1− s2 + s3− s4 > sm, allocation rules FT

s,min and FT
s,leximin do not satisfy global monotonicity.

For the remaining cases we conjecture that global monotonicity is not satisfied. This may depend
on the tie-breaking mechanism.

Corollary 9 For each scoring vector s ∈ {borda, lex} for m≥ 7 goods, allocation rules FT
s,min and

FT
s,leximin do not satisfy global monotonicity. In addition, for each extended scoring vector s satisfying

s1(m)> s2(m)> · · ·> sm(m) for even m≥ 4, allocation rules FT
s-qi,min and FT

s-qi,leximin do not satisfy
global monotonicity either.

3.3 Object and Duplication Monotonicity and Cloning
Object monotonicity is a dynamic property where additional goods are to be distributed. This means
that when new objects are added, no agent is worse off afterwards. In order to define this notion, since
some properties need comparability of bundles of goods, we lift agent i’s linear order >i to a strict
partial order �i over 2G by requiring monotonicity (A ⊃ B =⇒ A �i B) and pairwise dominance
(for all A ⊆ Gr {x,y}, A∪{x} �i A∪{y} if x >i y). For strict partial orders we then follow the
approach taken by Brams and King [8], Brams, Edelman, and Fishburn [6], and Bouveret, Endriss,
and Lang [3]: We distinguish between properties holding possibly (i.e., for some completion of the
partial preferences) and necessarily (i.e., for all completions).

Definition 10 Let � be a strict partial order over 2G. We say A is possibly preferred to B, A�pos B,
if there exists a linear order �∗ refining � such that A�∗ B. Analogously, A is necessarily preferred
to B, A �nec B, if for all linear orders �∗ refining � we have A �∗ B. Allowing indifference, we
extend �pos to �pos and �nec to �nec.

Now, we are ready to define possible and necessary object monotonicity. These properties are
defined for deterministic rules only.

Definition 11 Let P = (>1, . . . ,>n) be a profile over the set G of goods and let P′ = (>′1, . . . ,>
′
n) be

a profile that is obtained by adding one more good g to the set of goods, and such that the restriction
of P′ to G is P. An allocation rule F satisfies possible (respectively, necessary) object monotonicity if
for all P over G, P′ such that P is the restriction of P′ over G, and all i, we have F(P′)i �pos

i F(P)i
(respectively, F(P′)i �nec

i F(P)i).

Proposition 12 For all tie-breaking priorities T , FT
s,+ satisfies possible object monotonicity for all

scoring vectors s for n = 2 agents, yet does not do so for all n≥ 3 and strictly decreasing scoring
vectors s.

Necessary object monotonicity might not be true even with only two agents for FT
+,s for some

tie-breaking mechanism T . This can be shown by a counterexample (omitted due to lack of space).
Monotonicity in agents has a natural translation in terms of voting power: to give more voting

power to a voter, one can just allow her to vote twice (or more). In other words: duplicating a voter
will give more weight to her ballot, and give her a higher chance to be heard. For weighted voting
games, the related issue of merging and splitting players (a.k.a. false-name manipulation) has been
studied [1, 18]. This property has a natural translation to the resource allocation context: informally,
two agents having the same preferences will get a better share together than if they were only one
participating in the allocation process. More formally:

Definition 13 Let P = (>1, . . . ,>n) be a profile over G and P′ = (>1, . . . ,>n,>n+1) be its extension
to n+1 agents, where >n+1=>n. An allocation rule F satisfies possible duplication monotonicity
if F(P′)n ∪F(P′)n+1 �pos

i F(P)n; and it satisfies necessary duplication monotonicity if F(P′)n ∪
F(P′)n+1 �nec

i F(P)n.
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It turns out that several scoring allocation rules satisfy at least possible duplication, provided
that we use “duplication-compatible” tie-breaking rules, namely, rules T that satisfy the following
property: let π and π ′ be two allocations on (>1, . . . ,>n,>n+1) (n and n+1 being a duplicated agent
as above); then π >n+1

T π ′⇒ (π1, . . . ,πn∪πn+1)>
n
T (π ′1, . . . ,π

′
n∪π ′n+1). For such tie-breaking rules

we have:

Theorem 14 For each scoring vector s, Fs,+ satisfies possible and necessary duplication monotonic-
ity, and Fs-qi,leximin and Flex,leximin both satisfy possible duplication monotonicity.

False-name manipulation has been studied in voting [11, 22], cooperative game theory [1, 18],
pseudonymous bidding in combinatorial auctions [23], and, somewhat relatedly, cloning has been
studied in voting [21, 13]. Applying this setting to resource allocation, we now assume that agents
can participate with multiple identities at the same time. Each of an agent’s clones will have the same
preferences as this agent. As they are from the point of view of the agents, we assume that each agent
knows its own linear order over 2G.

Definition 15 Let P = (>1, . . . ,>n) be a profile of linear orders over G and �i agent i’s linear order
over 2G extending >i. An allocation rule F is susceptible to cloning of agents at P by agent i with
�i if there exists a nonempty set Ci of clones of i (each with the same linear order >i) such that⋃

j∈Ci∪{i}π ′j �i πi, where π = (π1, . . . ,πn) = F(P), P′ is the extension of P to the clones in Ci, and
π ′ = (π ′1, . . . ,π

′
n+‖Ci‖) = F(P′).

Proposition 16 If m≥ 4 and m > n, then for each strictly decreasing scoring vector s = (s1, . . . ,sm),
allocation rules FT

s,min and FT
s,leximin are susceptible to cloning.

3.4 Consistency and Compatibility
Our scoring allocation rules are based on the maximization of a collective utility defined as the
aggregation of individual utilities. An orthogonal classical approach is to find an allocation that
satisfies a given (Boolean) criterion. Among the classical criteria, envy-freeness states that no agent
would be better off with the share of another agent than it is with its own share, and a Pareto-efficient
allocation cannot be strictly improved for at least one agent without making another agent worse-off.

A natural question is to determine to which extent the scoring allocation rules are compatible
with these criteria. More formally:

Definition 17 Let P be a profile and let X be a property on allocations. An allocation correspondence
F is X-consistent (respectively, X-compatible) if it holds that if there exists an allocation satisfying X
for P, then all allocations in F(P) satisfy X (respectively, there is an allocation in F(P) that satisfies
X).

The interpretation is as follows: if F is X-consistent, then no matter which tie-breaking rule is
used, an allocation satisfying X will always be found by the allocation rule if such an allocation
exists. If F is X-compatible, it means that a tie-breaking rule which is consistent with X (that is: if
π � X and π ′ 6� X then π >T π ′) is needed to find for sure an allocation satisfying X when there is
one. Obviously, any X-consistent rule is also X-compatible.

We will now investigate the compatibility and consistency of the scoring rules for Pareto efficiency
and envy-freeness. However, these two criteria, which are initially defined for complete preorders
on 2G, need to be adapted to deal with incomplete preferences.4 For that, we borrow the following
adaptation from [4]. First, given a linear order � on G, we say that a mapping w : G→ R+ is
compatible with � if for all g,g′ ∈ G, we have g � g′ if and only of w(g) > w(g′); next, given
A,B⊆ G, we say that A�pos B if ∑g∈A w(g)≥ ∑g∈B w(g) for some w compatible with �, and that
A�nec B if ∑g∈A w(g)≥ ∑g∈B w(g) for all w compatible with �. Then:

4Recall that we only know the preferences on singletons of objects, which have to be lifted to 2G for the raw criteria to be
directly applicable.
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Definition 18 Let (�1, . . . ,�n) be a profile of strict partial orders over 2G and let π,π ′ be two
allocations. We say (1) π ′ possibly Pareto-dominates π if π ′i �

pos
i πi for all i and π ′j �

pos
j π j for some

j; (2) π ′ necessarily Pareto-dominates π if for all π ′i �nec
i πi for all i and π ′j �nec

j π j for some j; (3) π

is possibly Pareto-efficient (PPE) if there is no allocation π ′ that necessarily Pareto-dominates π;
(4) π is necessarily Pareto-efficient (NPE) if there is no allocation π ′ that possibly Pareto-dominates
π; (5) π is possibly envy-free (PEF) if for every i and j, πi �pos

i π j; (6) π is necessarily envy-free
(NEF) if for every i and j, πi �nec

i π j.5

An important question is, given a profile P, whether or not there exist a scoring vector s and an
aggregation function ? such that the allocation correspondence Fs,? is X-consistent or X-compatible,
where X ∈ {NEF, NPE}. While this question is not answered yet in general, we can first observe
that Fs,+ is not NEF-consistent for strictly decreasing scoring vectors. We can also prove that these
properties cannot be guaranteed for some of the specific scoring vectors considered here with min or
leximin aggregation. Note that if Fs,? is not X-compatible then it is not X-consistent, but the converse
is not always true.

Proposition 19 Let ? ∈ {min, leximin}. (1) Flex,? is neither NEF-compatible nor NPE-compatible.
(2) Fs,? is neither NEF-consistent nor NPE-compatible for s ∈ {borda,borda-qi}. (3) Fk-app,? is
neither NEF-consistent nor NPE-consistent.

Proposition 20 If n = m, for each scoring vector s, Fs,min and Fs,leximin are NEF-compatible (and
even NEF-consistent for strictly decreasing s) and NPE-compatible.

4 Winner Determination
In this section, we study the question: What is the complexity of determining an optimal allocation
for a given scoring vector and a given aggregation function? For a given scoring vector s and a given
aggregation function Fs,?, where ? ∈ {+,min, leximin}, define the following problem concerning
winner determination.

Fs,?-OPTIMAL-ALLOCATION (Fs,?-OA)

Given: A profile P of n agents’ rankings on a set G of indivisible goods and an allocation
π of G.

Question: Is π in Fs,?(P)?

It is easy to see that Fs,+-OA is in P and both Fs,min-OA and Fs,leximin-OA are in coNP for every
scoring vector s.

The search problem Fs,?-FIND-OPTIMAL-ALLOCATION (Fs,?-FOA) seeks to actually find an
optimal allocation. Clearly, Fs,+-FOA is solvable in polynomial time for any scoring vector s: every
good is simply given to an agent who ranks it best. Fs,min-FOA and Fs,leximin-FOA are much less
easy in general.6 We have the following easy polynomial-time upper bounds for restricted variants.

Proposition 21 (1) For each k, Fk-app,min-FOA is solvable in polynomial time. (2) Fs,min-FOA and
Fs,leximin-FOA are solvable in polynomial time for every scoring vector s if there are a constant
number of goods.

5For i 6= j, πi �pos
i π j and πi �pos

i π j (πi �nec
i π j and πi �nec

i π j) are equivalent, as the bundles to be compared are always
disjoint.

6Clearly, if the scoring vector s is part of the input then the problem Fs,?-FOA is (weakly) NP-hard, even for two agents
having the same preferences, by a direct reduction from PARTITION.
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FT
s,+ FT

s,min FT
s,leximin

separability 71 71 71

monotonicity 3 3 3

global monotonicity 71,2 71,3 71,3

pos. object mon. 3(n = 2), 7(n≥ 3)
nes. object mon. 74

pos. duplication mon. 35 35

nes. duplication mon. 35

susceptible to cloning 31 (m > n) 31 (m > n)

PEF
-compatible 3(m = n) 3(m = n)
-consistent 31 (m = n) 31 (m = n)

NEF
-compatible 78, 3(m = n) 78, 3(m = n)
-consistent 71 76,77,78, 31 (m = n) 76,77,78, 31 (m = n)

PPE-
-compatible 3(m = n) 3(m = n)
-consistent

NPE
-compatible 76,78, 3(m = n) 76,78, 3(m = n)
-consistent 76,77,78 76,77,78

1for strictly decreasing scoring vector
2for separable tie-breaking T

3additional restrictions on the scoring vector
4depends on the tie-breaking T

5for duplication-compatible tie-breaking T
6for s ∈ {borda,borda-qi}

7for s = k-app
8for s = lex

Table 1: Overview of axiomatic results

(1) is a special case of the problem of maximizing egalitarian social welfare with a {0,1}-additive
function, known to be solvable in polynomial time by applying a network flow algorithm [14]. In
addition, we will study the following decision problem associated with the value of an optimal
allocation.

Fs,+-OPTIMAL-ALLOCATION-VALUE (Fs,+-OAV)

Given: A profile P = (>1, . . . ,>n) of n agents’ rankings on a set G of indivisible goods
and k ∈ N.

Question: Is there an allocation π = (π1, . . . ,πn) such that ∑1≤i≤n u>i,s(πi)≥ k?

Analogously, we define Fs,min-OAV by asking whether or not min1≤i≤n u>i,s(πi)≥ k, and Fs,leximin-
OAV where the bound is an ordered list (k1, . . . ,kn) of nonnegative integers and we ask whether
(u>1,s(π1), . . . ,u>n,s(πn))≥leximin (k1, . . . ,kn). Table 2 summarizes our complexity results.

Clearly, Fs,+-OAV is in P. Since the value of a given allocation for min and leximin can be
computed in polynomial time, Fs,min-OAV and Fs,leximin-OAV are in NP for each scoring rule s. For
lexicographic scoring and quasi-indifference, these bounds are tight.
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OA OAV FOA

Fs,+ in P in P pol. time

Fs,min coNP-comp∗ NP-comp∗ NP-hard∗

k-app or m ∈ O(1) in P in P pol. time
lex or e-qi coNP-comp# NP-comp# NP-hard#

borda coNP-comp NP-comp
lex or borda or in P in P pol. time

e-qi, if n ∈ O(1)

Fs,leximin coNP-comp∗ NP-comp∗ NP-hard∗

lex or e-qi in coNP NP-comp# NP-hard#

borda in coNP NP-comp
lex or borda or in P in P pol. time

e-qi, if n ∈ O(1)
∗if s is part of the input (even for two agents with same preferences)

# where e is a strictly decreasing scoring vector

Table 2: Overview of complexity results (gray: partial results)

Theorem 22 Flex,min-OAV and Flex,leximin-OAV both are NP-complete.

Theorem 23 For each fixed and strictly decreasing scoring vector e, Fe-qi,min-OAV and Fe-qi,leximin-
OAV both are NP-complete.

An anonymous reviewer of a previous draft of this paper obtained the following result.

Theorem 24 Fborda,min-OAV and Fborda,leximin-OAV both are NP-complete.

Using a slight adaptation of the proofs of Theorems 22, 23 and 24, we can show that Flex,min-OA,
Fε-qi,min-OA and Fborda,min-OA are coNP-complete. These proofs, however, do not directly extend to
the problems Flex,leximin-OA, Fε-qi,leximin-OA nor Fborda,leximin-OA.

Proposition 25 For each fixed and strictly decreasing scoring vector e, for each s∈ {borda, lex,e-qi},
Fs,min-OA is coNP-complete.

For a constant number of agents, we provide efficient algorithms for many of our problems via
dynamic programming.

Theorem 26 For each scoring vector e with polynomial (in m) bounded entries, for each s ∈
{borda, lex,e-qi} and for each ?∈ {min, leximin}, Fs,?-OA and Fs,?-FOA are solvable in polynomial
time if the number of agents is constant.

5 Approximation
Flex,min-OAV is NP-complete by Theorem 22. This raises the issue of whether there exists a
polynomial-time approximation algorithm for the search variant of this rule; this turns out to be the
case.

Proposition 27 There exists a (1/2)-approximation algorithm for Flex,min-FOA.

We now turn to a different kind of approximation: picking sequences, whose advantage is that
they avoid preference elicitation. We investigate the price to pay for that: in Section 5.1 (respectively,
Section 5.2), we focus on the ratio (respectively, the difference) between the value of the optimal
allocation and the value of the allocation obtained by applying a picking sequence.
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5.1 Multiplicative Price of Elicitation-Freeness
Simple protocols for allocating indivisible resources without eliciting the agents’ preferences first,
as discussed in [9, 5, 16], consist in asking agents to pick objects one after the other, following a
predefined sequence. An interesting question is whether using such protocols (without elicitation), or
simulating them from the known preferences (after full elicitation of the agents’ rankings) gives a
good approximation of our scoring rules: what is the loss incurred by the application (simulated or
not) of the picking sequence with respect to an optimal allocation? We give here two results for Borda
scoring: one for egalitarianism, one for utilitarianism. One may wonder why we should look for
such a result in the case of utilitarianism, given that there is a straightforward greedy algorithm that
outputs an optimal allocation. The reason is that picking sequences (when actually used, as opposed
to simulated ones) do better on one criterion: they are very cheap in communication, as agents only
reveal part of their preferences by picking objects, as opposed to revealing their full preferences in
the case of a centralized protocol.

Formally, a (picking) policy is a sequence σ = σ1 · · ·σm ∈ {1, . . . ,n}m, where at each step, agent
σi picks her most preferred object among those remaining (where we assume agents to use only their
sincere picking strategies). For instance, if m = 4 and n = 2, 1221 is the sequence where 1 picks
an object first, then 2 picks two objects, and 1 takes the last object. The precise definition of an
allocation induced by a picking sequence and a profile, assuming that agents act according to their
true preferences, is in [5]. Sequential allocation rules are appealing because they require even less
input from the agents than singleton-based allocation rules; however, this gain in communication
comes with a loss of social welfare. To quantify this loss, we define the following measure.

Definition 28 Given a policy σ (for n agents and m objects), a scoring vector s, and an aggregation
function ? ∈ {+,min}, the multiplicative price of elicitation-freeness of σ , which we denote by
MPEFs,?(σ), is the worst-case ratio in social welfare between an optimal allocation for Fs,? and the
sequential allocation, among all profiles with m goods.

Since we focus on s = borda only, we from now on simply write MPEF?(σ) to mean
MPEFborda,?(σ). We now give results about the quality of the outcome of balanced picking se-
quences (12 · · ·n)m

n , assuming that m is a multiple of n. For instance, if m = 6 and n = 3, σ = 123123
is balanced.

Computing the price of elication-freeness is challenging. We focus on the regular policy σn
R =

(1 · · ·n)∗, but our results are very similar to those for other fair policies such as (1 · · ·nn · · ·1)∗.

5.1.1 Lower Bounds

A naive algorithm for computing the additive or multiplicative PEF for a given value m is simply to
generate all possible profiles and for each of them to compute an optimal allocation from which it is
possible to deduce the loss incurred by the sequential allocation. However, the number of profiles
grows exponentially in m, and computing an optimal allocation might be intractable. Still, it is
possible to lower-bound the PEF for a given m by computing the incurred loss for a subset of all
possible profiles. The conclusions that can be drawn from computational experiments is that for
?=+, in the worst case the loss seems to be in the order of m (which is good), whereas in the average
case the loss seems to grow also linearly with m. The conclusions for ?= min are somewhat similar,
but they are less firm, as we have not been able to go as far in the number of objects as for ?=+. We
now provide a formal lower bound for MPEF for ?=+, and the regular policy.

Proposition 29 For m = kn objects, MPEF+(σ
n
R) ≥ 1 + mn−m−n2+n

m2+mn , and thus we have
MPEF+(σ

n
R)≥ 1+ n−1

m +Θ(1/m2) when m tends to +∞ with n being held constant.
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5.1.2 Upper Bounds

We now also provide formal upper bounds for MPEF for ?=+ and ?= min, and the regular policy.

Proposition 30 For m = kn objects, MPEF+(σ
n
R) ≤ 2− m−n

mn+n , and thus MPEF+(σ
n
R) ≤ 2− 1

n +
Θ(1/m) when m tends to +∞ with n being held constant.

Corollary 31 If n = 2 and m = 2k, 1+ m−2
m(m+2) ≤MPEF+(σ

2
R)≤ 3

2 +
3

2m+2 .

Proposition 32 For m = kn objects, MPEFmin(σ
n
R) ≤

2mn−m+n
mn+2n−n2 , and thus MPEF+(σ

n
R) ≤ 2− 1

n +

Θ(1/m) when m tends to +∞ with n being held constant.

Corollary 33 If n = 2 and m = 2k, MPEFmin(σ
2
R)≤ 3

2 +
5

m+4 .

5.2 Additive Price of Elicitation-Freeness
Definition 34 Given a policy σ (for n agents and m objects), a scoring vector s, and an aggregation
function ? ∈ {+,min}, the additive price of elicitation-freeness of σ , denoted by APEFs,?(σ), is the
worst-case difference in social welfare between the sequential allocation and an optimal allocation
for Fs,? among all profiles with m goods.

Since we focus on s = borda only, we simply write APEF?(σ) to mean APEFborda,?(σ).
We now provide a formal lower bound linear in m for ?=+, with a fixed number of agents n and

the regular policy.

Proposition 35 For m = kn objects, APEF+(σ
n
R)≥

(n−1)(m−n)
2 .

We now also provide a formal upper bound quadratic in m with a fixed number of agents n, for
?=+ and ?= min, and the regular policy.

Proposition 36 For m = kn objects, APEF+(σ
n
R)≤

(m−n)(mn−m+n2+n)
2n .

Corollary 37 For n = 2 and m = 2k, m
2 −1≤ APEF+(σ

2
R)≤ m2

4 +m−3.

Proposition 38 For m = kn objects, APEFmin(σ
n
R)≤

m2n−mn−m2+mn2

2n2 .

This upper bound is asymptotically better (by a factor of n) than the upper bound for APEF+(σ
n
R).

In particular, for two agents, it is in the order of m2/8 (to be compared with m2/4 for ? = + in
Corollary 37).

6 Concluding Remarks
Generalizing earlier work [8, 6], we have defined a family of rules for the allocation of indivisible
goods to agents that are parameterized by a scoring vector and an aggregation function. We have
discussed a few key properties, and for each of them we have given some positive as well as some
negative results about their satisfaction by scoring allocation rules. The relatively high number of
negative results should be balanced against the satisfaction of several important properties (including
monotonicity) together with the simplicity of these rules. And anyway, defining allocation rules
of indivisible goods from ordinal inputs on other principles does not look easy at all. Our results
on axiomatic properties are far from being complete: for many properties we do not have an
exact characterization of the scoring allocation rules that satisfy them, and obtaining such exact
characterizations is left for further research.
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In addition, focusing on four important scoring vectors and three central aggregation functions,
we have determined the complexity of computing an optimal allocation for almost all rules considered
here (see Table 2 for the list of results, and the problems whose precise complexity remains unknown).
We have also given some approximation results, some of which make use of picking sequences whose
main purpose it is to avoid preference elicitation.

Even if winner determination is computationally difficult for many choices of s and ? (except for
the trivial case of ?=+), these rather negative results should be tempered by the fact that in most
practical settings the number of agents and items is sufficiently small for the optimal allocation to
be computed, even when its determination is NP-hard. Moreover, the results of Section 5 show that
good approximations of optimal allocations can often be determined with a very low communication
cost. An issue that we did not consider here is manipulability. Almost all of our rules seem to be
manipulable; characterizing exactly the family of allocation rules that are manipulable and measuring
the extent to which our rules are computationally resistant to manipulation is clearly an interesting
topic for further research.
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