Comparison of two constraint programming algorithms
for computing leximin-optimal allocations

Sylvain Bouveret? and Michel Lemaitre!

Abstract.

We propose two constraint programming algorithms for swvi
the following problem: fairly and efficiently allocate a fiaeiset of
objects to a set of agents, each one having their own usilitie-
der admissibility constraints. Our algorithms compute Bocation

maximizing theleximin order on the utility profiles of the agents.

Our main contribution is the use of a cardinality meta-cist on
the one hand, and an adaptation of an existing algorithmrffore-
ing a multiset ordering constraint on the other hand.

Moreover, we describe the application domain that mott/aés
work: sharing of satellite resources. We extract from thed-world
application a simple and precise fair allocation probleat #ilows
for testing and evaluating our algorithms, using a benckrganer-
ator. The implementations of both algorithms have beeedassing
the constraints programming tooHOC0[12], and a translation of
the first algorithm to integer linear programming has bestetbus-
ing CPLEX [10].

1 INTRODUCTION

Efficiently and fairly allocating a bounded set of resourtesev-
eral agents having their own preferences is a rather gepeblem
having a wide scope of applications. Some examples carydasil
found: balanced timetables, fair share of communicaticmoeks,
allocation of airport and airspace resources to severkhes:; fair
share of a constellation of Earth observation satellites.

Within this paper, this problem will be restricted using rfad-
ditional hypotheses: 1) the set of resources is discretefiaitd,
and is thus equivalent to a finite set of indivisible and distiob-
jects; 2) the agents preferences over the set of admissibtations
are numerically expressed; 3) we sdak and efficientallocations
(the meaning of these words will be explained later); 4) thenoal
allocation is computed in eentralizedmanner, by a “benevolent ar-
bitrator”, assumed to be fair, and obeying principles thazecepted
by all the agents. In other words, we will not deal with distitied al-
location procedures. We may notice that many real-worldleras
(like those cited before) still match these four hypotheses

This problem has been studied in different active researointu-
nities: Operational Research (OR), Atrtificial Intelligenl), Mi-
croeconomy, Social Choice Theory. Our contribution is iresp by
all of them: from the last two we borrow the idea of represanthe
agents preferences hyility levels, and we adopt thieximin pre-
order for conveying the fairness and efficiency requiresedR and

Al provide theCSP and constraint programming frameworks as ef-
fective and flexible computation and modeling tools.

Numerical preferences and utilities Let S be a finite set of ad-
missible alternatives concerningagents (each one having her own
preferences), among which an arbitrator must choose oreeniist
classical model describing this situatiaelfarism(seee.g.[11, 15]).
According to this model (which will be used in this paper) tfe-
cision of the arbitrator is based on the satisfaction legejsyed by
the individual agents, and on those levels only. Theseden@& mea-
sured, in the cardinal version of this model, by a numerindek
giving theindividual utility u; (s) of agenti concerning alternative.
We admit here that the individual utilities are comparabdénzen
the agents (in other words, they are expressed in a commbn uti
ity scale). Thus we can map each alternativeo a utility profile
(u1(s), ..., un(s)), and moreover this is the only relevant informa-
tion we use to compare two alternatives.

An easy way to compare individual utility profiles is to aggpee
each of them into aollective utilityindex, standing for the collective
welfare of the agents community. 4§fis a well-chosen aggregation
function, we thus have a collective utility functiaf that maps each
alternatives to a collective utility levelg(ui(s), ..., un(s)). An op-
timal alternative is one of those maximizing the collectiniity.

Fairness and efficiency using the leximin preorder The main
difficulty of our fair allocation problem lays on the fact thae have
to reconcile the contradictory wishes of the agents. Thegemerally
no allocation that fully satisfies everyone; we thereforguest ag-
gregation functiong leading to fair and efficient compromises. This
notion of efficiency (simply meaning that resources havectased
as much as possible) is usually represented by Pareto-aljttitn

The problem of choosing the right aggregation functiois far
beyond the scope of this paper. We will only describe the tvastm
usual ones, that stand for two rather extreme points of viesozial
welfar€. The first one is the sum function, that leads to thassi-
cal utilitarianism, and the second one is thein function, used by
egalitarianists The first function is not very relevant to our particular
problem, since the resulting collective utility does nopeled on the
balancing of the utility profile. On the contrary, the minimdunc-
tion is particularly well-suited for the kind of problemswhich fair-
ness plays an important role, because the optimal deciaierthose
maximizing the satisfaction of the less happy of the agéisiever,

1 A decision is Pareto-optimal if and only if we cannot stydiicrease the

1 Office National dEtudes et de Recherches Aérospatiales — DCSD. 2, av- satisfaction of an agent unless we strictly decrease tfigfaztton of an-

enueEdouard Belin, B.P. 4025. F-31055 Toulouse cedex 4
2 Institut de Recherche en Informatique de Toulouse. 118erme Narbonne.
F-31062 Toulouse cedex.

other agent.
2 Some compromises between these two extremes existe.§4&5, page
68] (sum of powers) or [19]@rdered Weighted Averaging aggregafprs

a major drawback of the minimum function, classically séatin the
community of fuzzyCSP, and usually called “drowning effect” [3],
is that this function leaves many alternatives indistispable. Thus
for example, the utility profilego, . .., 0) and (1000, ..., 1000, 0)
both produce the same collective utilityin spite of the fact that the
second one appears to be far better than the first one. Inwthds,
this aggregation function can lead to non Pareto-optimeisitens,
which is not desirable.

Two classical refinements of the order induced by1thia func-
tion overcoming this drawback can be proposed: the disoramnid

solution of an instance of this optimization problem is a ptete
consistent instantiatiot of the constraints network such thgb) =
max{v’(0)|v’ complete consistent instantiatipn

Let@ = (x1,...,z,) be a vector of numbers; we wriig " =
(z[, ..., x}) the vector made of every components@f sorted in
non-decreasing order. We now define the leximin preorder iote-
ger vectors:

Definition 1 (leximin preorder [14]) Letz and 3 be two vectors

leximin orders [5]. The first one is not a total preorder. The seconddf N™. =" and 3/ are saidleximin-indifferent (Writtenz ~iezimin

one is classically used in Social Choice [14], and this isrefae-
ment that we will use in this paper. Before introducing itnfiadly in
section 2, we describe it informally. Comparing two utilfiyofiles
using the leximin preorder is not based on an aggregatioctifum
but on the profiles themselves. First, the two minimal valofethe
profiles are compared: if they are different, the biggestwins; oth-
erwise, these two minimal values are removed from the yiilib-

y) if and only itz = v 1. The vectory is leximin-preferred to
T (written 7 '<lecczmzn Y) if and only if3; € [0,n — 1] such that
—

Vi € [1,1], :c —_)yJ iil_ﬂ)daxlJrl < ylJrl We Write T <iecimin U
fOf X <leaumbn Yy Oor © ~jeximin y

The binary relation<;c..mi» IS a total preorder.
In a collective decision making problem]eimin-optimal solu-

files and we repeat the same operation on the two new profiles. Ation is an alternative whose associated utility profile is<imeal for

equivalent procedure is to sort each profile in non-decngasider
and then to compare them using the lexicographic order.

This paper is organized as follows: section 2 formally defioer
problem using theCSP framework. Section 3 presents our main
contribution: it describes two algorithms for computinge&imin-
optimal alternative using constraint programming. Thedgerithms
are based on existing constraints; our contribution is tothem to
fit the needs of our problem for fairness and efficiency.

Section 4 deals with the motivating real-world applicatishar-
ing a constellation of Earth observation satellites. Weaettfrom
this real-world application a simple and precise fair aliban
problem that allows for testing and evaluating our algonih us-
ing a benchmark generator. The implementations of the tgo-al
rithms have both been tested using the constraints progiragriool
CHocCO[12], and a translation of the first algorithm to integer &ne
programming has been tested usingLEX [10]. Section 5 presents
related work, just before conclusion and future work, sec6.

2 FRAMEWORK

The constraint programming framework is widely used forvsol
ing many different combinatorial problems such as timetaisbb-
lems, scheduling problems, frequency allocation problenT$is
paradigm is based on the notionaainstraints networkA constraints
network is made of a set of variablas= {z1, ..., z,}, whered,,

is the finite set of possible values fey (we assumé,, C N, and we
use the following notationst; = min(d,,) andz; = max(d.,)),
and of a set of constrainta Each constrain€ € C describes a set
of allowed tuplesk(C') over a set of variableX (C).

An instantiationv of a setS of variables is a function that maps
each variable: € S to a valuev(z) of its domaind,.. If S = X, this
instantiation is said to be complete, otherwise, itis partf S’ C S,
the projection of an instantiation 6fover S’ is the restriction of this
instantiation toS’, and it is writtenv;s,. An instantiation is said
to be consistent if and only if it satisfies every constra@itven a
constraints network, the problem of finding whether thenstexa
complete and consistent instantiation to this constraiats/orks is
called Constraint Satisfaction Proble@SP) and isNP-complete.
Such an instantiation, if it exists, is called a solutionte €SP.

There is an optimization problem derived from B8P (coming

from the max€SP extension of constraint satisfaction problems),

where a special variable plays the role ofobjective variable A

the preorder;..imin. The main advantage of such a solution is that
it is bothmin-optimal and Pareto-efficient.

The CSP optimization variant allows for encoding the problem
of maximizing the egalitarian collective utility (with = min) of n
agents: we introduce variables(u, ..., u,) corresponding to the
utilities of each agent, and one objective varialdelinked with the
other variables by the set of constraiftsy, ..., C,}, with C; =
(ue < uy).

However, expressing the problem of computirigs=amin-optimal
decision in theCSP framework is not straightforward. It indeed
needs a slight modification of the optimization version & @SP.
Let us consider the following problem:

[CEXIMIN -OPTIMAL]

Inputs: a constraints networkX’, D, C); a vector of vari-
ablesu = (ui,...,un) (Vi, u; € X), calledob-
jective vector

Output: “Inconsistent” if there is no complete consistent in-

stantiation. Otherwise a complete consistent instan-
tiation v such that for all complete consistent in-
stantiationv, v(W) Xiezimin Us(W).
We propose two generic algorithms for solving this probl&ime
first one is based on a cardinality meta-constraint, andebersl one
is based on a multiset ordering constraint.

3 TWO ALGORITHMS
3.1 Using cardinality constraints

The main idea of algorithm 1 is to iteratively compute eacim¢o
ponent of the sorted version of the optimal objective ve(ter the
vector of values of théeximin-optimal instantiation of’). Thus
we introduce at lines 3 and 4 a vector of optimization vagabthe
role of each variableg;; being to compute the value of the indéx
of the leximin-optimal vector. During each iterationof the loop
6..10, a cardinality constraint corresponding to the ailyecom-
puted component is added (line 7), and then we compute (Jitlee8
maximal value of variabley; such that the current constraints net-
work (corresponding to the initial one, added with variahje and
with cardinality constraints from previous iterationskhasolution.
The variabley; is fixed to this optimal value (line 9) for all the fol-
lowing iterations. In line 10 the domain of the next variaple; is

Algorithm 1: Pseudo-code of an algorithm that computes a
leximin-optimal solution of a constraints network using cardi-
nality constraints.

inputs : a constraints networkX’, D, C); a vector(ui, . . .
of variables fromY’

output: A solution to the problemuUexIMIN -OPTIMAL] or
“Inconsistent”

) un>

1 if solve(X, D, C) ="Inconsistent” then
2 L return “Inconsistent”
3X —XU{y1, .-, yn}s
4D —
D U {[min; (wi), max; (w)], .. . , [min (us), max; (wi)]};

5C «—C;

6 for i — 1ton do

7 | ¢« CU{AtLeast({u1 > yi,...,un > yi},n—i+1)};
8 U« maximize(y;, (X',D’,C"));

9 | dy, —{U(yi)};

Ay, — [o(y:), max; (w)];

return v x;

safely restricted, but this restriction does not seem tosserdial (it
does not decrease significantly the execution time).
The algorithm uses the cardinality meta-constraititeast:

Definition 2 (Meta-constraint AtLeast) LetI" be a set ofp con-
straints, andk € [1,p] be an integer. The meta-constraint
AtLeast(T', k) is the constraint that holds on the union of the
scopes of the constraints in, and that allows a tuple if and only
if at leastk constraints from" are satisfied.

This meta-constraiftis introduced agonstraint combinatqrfor
example in [9]. The role of this constraint in algorithm 1asinforce
a lexicographic order constraint (the set of cardinalitpstoaints
obliges the next solutions to Beximin-superior to the current par-
tial leximin-optimal vector).

The two functionsolveandmaximize (the detail of which is the
concern of solving techniques for constraints satisfactimblems)
of lines 1 and 8 respectively return one solution of the aasts net-
work (X', D’,C’) (or “Inconsistent” if such a solution does not ex-
ist), and an optimal solution of the constraints netwo, D', C’),
with objective variabley (or “Inconsistent” if such a solution does
not exist). We assume — contrary to usual constraints solvehat
these two functions do not modify the input constraints oekw

Let us illustrate how the algorithm works with an example:

We consider a basic resource allocation
problem, where 3 objects have to be allo-
cated to 3 agents, with the following con-
straints: (1) each agent must get one and
only one object, and (2) one object cannot
be allocated to more than one agent. A utility is associaii#itleach
pair (agent, object), with respect to the array above.

This problem has 6 feasible solutions (one for each pertoatat
[1,3]), producing the 6 utility profiles shown in the following aw:

al a2 as
o1 | 3 3 3
o2 | 5 9 7
03 7 8 1

P1 | P2 | P3 | P4 | P5 | P6
utilityfora; | 3 | 3 | 5|5 | 7| 7
utilityforas | 9 | 8 | 3 | 8 | 3| 9
utilityforas | 1 | 7 1|13 |7 3

3 The prefix “meta” indicates that this constraints has sorheratonstraints
as parameters.

The algorithm runs in 3 steps:

Step 1: We introduce a variablg; and we look for the maximal
value i of y1 such that eachaf least3) agent gets at leagi. We
findgn = 3.

Step 2: We add the constraint that each agent gets at lgast 3
(thus removing profileg: andps). Then we introduce a variablge
and we look for the maximal valug: of y» such thatat leasttwo
agents get at leagt. We findyz = 7.

Step 3:We add the constraint that at least 2 agents get atjeast”
(thus removing profile@s). Then we introduce a variablg and we
look for the maximal valugs of ys such thatt leastone agent gets
atleastys. We findgz = 9. Only one instantiation maximizes: ps.
The corresponding allocation igi < o3, as < 02 andas « o1 .

Proposition 1 If the two functionsnaximize andsolve are both cor-
rect and both halt, then algorithm 1 halts and returns a soltto
the problem LEXIMIN -OPTIMAL].

Proof: If functionssolveandmaximize both halt, then obviously
algorithm 1 halts.

If the initial constraint network has no solution, and if &tion
solveis correct, then algorithm 1 returns “Inconsistent”. In the
lowing, we will suppose that the initial constraint netwbiks at least
one solution.

We will write ©; for the instantiation returned at iteratianby
function maximize, and ¢, a solution to the problem [EXIMIN -
OPTIMAL].

Proof sketch : In order to prove that the algorithm is cor-
rect, we show that the call tonaximize never returns “In-
consistent”, and that, (w)’ ()", To do that, we
make use of induction on the following hypothesigid;)

7 exists and/j < i, 6(W)} = Bi(y;) = @(U)T).

J

At iteration 1, the constraintAtLeast({u: > w1,...,
u, > yi1},n) IS equivalent to the constraingy; <
min; (u;). Thereforemaximize returns an extensiom; of a so-
lution of the initial constraint network, such thaf (y:)
max{min;(v1(u;))|v1 is a complete consistent instantiatjorThus
we haved (y1) = 61 ()], Moreover,si (y1) > 0s(w)] if maxi-
mizeis correct (there is a consistent extensiomobn (X', D', C")).
We cannot haveri (1) > ©s(w)!, because it would mean that

&1 ()] > v:(w)] and thus that would be a solutiofeximin-
superior touv,, which is not possible. This prové#7;).

Letus show thatH;) = (Hi+1),1 <i<n—1.

Let us first prove that; {1 exists (that is, the constraint network
of iterationi + 1 has at least one solution).

The instantiatiory; is the projection oveft’ of a solution of the
constraint network at iteratioi+ 1. Indeed:
— by definition,v; satisfies all the constraints of the initial network;

— Vj < i, i(y;) = 6:(W)] (following from (H,)), thus@; ()
and all its following components in the sorted vector (tbat+ 7+ 1
components of;; (u)) are greater or equal @ (y;), which satisfies
constraintAtLeast at iteration;.
— 0(W)}, > o(W)] by definition, thus there is at least one
consistent value fog;41 : 0; (y;).

Therefore the constraint network at iteratiof 1 has at least one
solution (thusi; 11 exists).

Moreover, for allj < i+ 1, 5;11(w)! > ©i11(y;) (otherwise
at least one of the constraimdlLeast is violated). By noticing that
an admissible allocation fofX’, D’,C’) at iterationi + 1 is also
admissible at iteratioh(because we only add a constraint and reduce
the domain of variables between two iterations), we dedoaewe
cannot haveﬁﬁ(ﬂ’)} > Ui+1(y;). Indeed, if it were the case, since
vit1(y;) = 05(y;) (because for each < i + 1, the domain of
y; is a singleton);11 would have been stricly better thaf for

y; at iterationj, which is not possible imaximize is correct. Thus
Vi<i+1, 1;7-?1(7); = u;11(y;), which proves the first equality.
The extension of; that instantiates the valug ()], t0yi+1 is

feasible at iteration + 1 (it satisfies, as well as the other constraints,

the constrainiAtLeast of iterationi + 1). Thereforev/zh (Yit1) >
z?s(_’)Z+1 If we had vi71(yi+1) > 0:(W).,,, then the projec-
tion of v;11 over X would be a solution of this constraint network
such thatvj < 4 + 1, @(H)T = 173(_’)T andoii (W), >
vé(_’)zﬂ, thus aleximin-superior solution thar;, which is not

possible. We thus havé; ;i (yiy1) = vs(_))iﬂ, which finally
proves(H;t1).

By induction, we have: (1¥, is a solution of the constraint net-
work at iterationn, thusa fortiori its projection overX is a solution,
and (2) for each, v, (@)! = 4,()!, thust, () and®; () are
leximin-indifferent.

Therefore the instantiation returned by algorithm 1 is atoh of
the problem [LEXIMIN -OPTIMAL].

Constraint programming suits particularly to the impletagion
of this algorithm; however, the cardinality meta-constt#s also ex-
pressible using the linear programming framework [8, p.b¥]in-
troducingn 0-1 variables{éi,...,d,}. The cardinality constraint
AtLeast({z1 > y,...,zn» > y}, k) is then equivalent to the set of
linear constraint{z1 + 617 > ¥, ..., Tn + 0,7 > ¥, 3 o1 0i <
n—k}.

3.2 Using a multiset ordering constraint

The second procedure we present for computihgxanin-optimal
solution of a constraints network is based on the multiséerng
constraint introduced in [6]. In this paper, the authorscdes an
algorithm for enforcing generalized arc-consisténop a multiset
ordering constraint. Informally, such a constraint workswo mul-
tisets of variabled/ and N (unordered lists of variables where repe-
tition is allowed), and ensures thaf <,,, N, <., being the standard
strict order on multisetsM <., N if and only if eitherM is empty
and N is not, or the largest value in/ is smaller than the largest

one inN, or they are the same and, if we eliminate one occurrenc X.D,C

of the largest value from both/ and IV, the resulting two multisets
are ordered.

We can notice that this order also works for vectors of védegb
(that can be viewed as multisets), and that it is close to efinid

tion of theleximin-ordering: the only difference is that at each step,

we focus on the smallest value instead of the biggest one.alFhe
gorithm described in [6] is based on two vectors of length- [
(with v = max({Mi]i € [0,|M[]} U {N;]j € [0,|N]]}) and
I = min({Mli € [0,[M[J} U {N;]j € [0,|N|]})) called oc-

concerns every variables belonglngﬁ and allows a tupleu()
if and only if N iewimin v(x)

Algorithm 2: Pseudo-code of an algorithm that computes a
leximin-optimal solution of a constraints network using a
leximin constraint.
inputs : a constraints networkX’, D, C); a vector(ui, . . .
of variables fromY’
output: A solution to the problemiEXIMIN -OPTIMAL] or
“Inconsistent”

1 v < solve(X, D, C);

2 while v #"Inconsistent” do

3 0 — v,

4 C « CU{Leximin(%(W), W)};
5 v « solve(X,D,C);

6 if ¥ # null then return 7;

7 else return“Inconsistent”;

) u’”)

The principle of the algorithm is rather simple. At the betny,
it computes a solution to the constraints network, and alh step
it tries to find a better solution, as regards the stkgimin order,
until the constraints network becomes inconsistent. Ofsmuthe
algorithm can be implemented in a branch-and-bound maneer,
without restarting the search process after a solution 8as fbund
(this is what we actually implemented).

Proposition 2 If the functionsolve is correct and halts, then al-
gorithm 2 halts and returns a solution to the probldrExIMIN -
OPTIMAL.

Proof: If (X,D,C) is inconsistent, thew is never initialized,
and thus the algorithm returns “Inconsistent”. Otherwibe, loop
2..4 is entered at least once, ané initialized (thus preventing the
algorithm from returning “Inconsistent”). In this case réturns a
complete consistent instantiatiorof the initial constraints network
), because itis consistent with an sup-set ¢&nd therefore
W|th C). Furthermore, iolveis correct, there is no other complete
consistent instantiation’ of (X, D,C) such that' (W) >iezimin
o(W) (otherwise the last call teolvewould not have returned “In-
consistent”)

4 A REAL-WORLD APPLICATION: SHARING
A CONSTELLATION OF SATELLITES

We now describe the real-world application that originafigtivated

currence vectorsThe basic algorithm explicitly computes these two thjs work, and that allowed for carrying out realistic expents and

vectors and runs in tim@(| N |4| M |+u—!). However, in our partic-

evaluations.

ular casey — [can be rather huge, as we will see in the description of

the application, in section 4. We thus use a variant of thgsrahm,
suggested in [6], that does not compute the occurrence rgectiod
runs in timeO(|N|log(|N|) + |M|log(|M])). The latter algorithm
can also be easily translated to enforce the steictmin ordering
between one vector of variables and one vector of integers.

We define the constraititeximin:

Definition 3 (Constraint Leximin) Let = be a vector of variables
— —
and)\ be a vector of integers. The constraibeximin(\, 7)

4 A constraint is generalized arc-consistent if and onlyiiffach variable: in
the constraint, for each valuec d,, if z is assigned t@, then compatible
values exist for all the other variables in the constraint.

4.1 Problem description

The application concerns the common exploitation by séagrents
(countries, companies, civil or military agencies, etaf g constella-
tion of Earth Observation Satellites (EOS). The missionoE®S is
to acquire images (photographies) of specified areas ondtib &r-
face, in response to observation demands from users, sisalfed on
figure 1. Such a satellite is operated by an Image Programaridg
Processing Center, the role of which is to collect each dagla-
tion demands from users, and to schedule consequently tugsac
tions for the next day. Thus the Center selects, among abltiser-
vation demands concerning the same day, those that willtlsfied,

satellite

visibility corridor
boundaries

a photography

\ Strip currently

AT \ being acquired
A\

\

|:| acquired photographies
[] unacquired photographies

Figure 1. Acquisition of photography strips by an Earth Observation
Satellite.

i.e.the set of photographies that will be acquired the next dathey
constellation. This set of satisfied demands is thereforayaatday
allocationof demands to agents.

The physical constraints and the huge number of demands con-

4.2 A fair allocation problem

We have extracted from this real-world application a sifigdi fair
allocation problem. It can be viewed as an extension of bl
[LEXIMIN -OPTIMAL], described in section 2.

A set of objects stands for the set of demands of our appicati
The conflicts between demands are approximately (but reaggn
represented by linear “generalized volume constraint®.nake to
notice that in this problem (1) all the objects will not nezasly be
attributed, and (2) the same object can possibly be alld¢atseveral
agent§.

Here is the formal description of this fair allocation preil. We
describe first the inputs:

e Ais asetofagents

e (Jis a set ofobjectsto attribute to agents;

e w;, IS a positive or zero number representing weghtof object
o according to agent

e 1, is theresource consumptioof objecto;

e rmazx; is themaximal amount of resource consumptiiowed
for agents;

e (is a set ofgeneralized volume constraints

e 1., is thevolumeof objecto in the generalized volume constraint
c,

e vmax. iS the maximal volumean the generalized volume con-

straintc.

cerning some specific areas generate some conflicts betweeen d

mands. It is therefore generally impossible to satisfy siameously
all the registered demands for the same day. This set of redmist
defines the set aidmissible allocations

Here are some typical orders of magnitude concerning thie rea

application: the number of agents generally lays betweend3éa

Hundreds of demands are registered each day, among whicit abo

100 to 200 will be satisfied.

Then we define the following variables:

e 1;, = lifobjectois allocated to agerit 0 otherwise, withv € O,
i € A. The possible instantiations of the variablgs stand for
the set of possible allocations (among which the admissibées
are);

° u; = Zoeo Tio - Wio 1S the individual utility of agent, i € A;

The demands of an agent are of unequal importance. Each ageftSe = MaXicaZio = 1is objecto is allocated to at least one

expresses the relative importance of its demands by giviagta
weight which is a positive or zero integeland which implicitly for-
mulates additive preferences: if two sets of demands hawexjaal
sum of weights, then the concerned agent is indifferent éetwe-
ceiving the first set of demands or the second one. imtiridual

agent otherwise.

The problem is to find an allocation maximizing theleximin
order on the individual utility profilegu;):c.4, given the following
admissibility constraints:

utility of an allocation for an agent is the sum of the weights of the

agent’s demands that are satisfied by the allocation. A psoafaor-

malization of utilities- the detail of which is beyond the scope of this

paper — is used, in order to make the individual utilities panable.
We only deal here with normalized utilities and weights.

All the agents did not equally fund the constellation, thead-
ing to unequal “rights to return on investments”. There ediffer-
ent ways to take unequal entitlements into account. Oneeofth
lutions, that we will use in this paper, is to translate thisquality
by some consumption constraints: each agent has the righttax-
imal amount of resource consumption, and this amount igrmdifft
for each agent. These consumption constraints are addee set of
admissibility constraints.

Beyond these unequal entitlements, the allocation of démém
agents has to be fair. Several different solutions to thissffocation
problem has been proposed in [13] and in [4]. One of the preghos
protocols to address fairness issues consists in choosialipgation
that maximizes thé&eximin order on individual utility profiles.

e wi, =0 = z;, = 0 (if an agent gives weight 0 to an object, this
object will not be allocated to héy,

° Zoeo Tio - To < rmax;, foralli € A (constraints on the set of
maximal consumptions of resources);

® > coSo Vo < vmaze, forallc € C (generalized volume
constraints).

Complexity of the problem Given an instance of the fair alloca-

tion problem, we writezm the individual utility profile resulting
from the complete allocatior (i.e. in which all thez;, variables
are instantiated). Let us consider the decision problemcised to
the fair allocation problem, defined as followGiven an instance
of the fair allocation problem and a utility profilé_f, does an ad-
missible allogti())nz (satisfying all the constraints) exist, such that
ﬁ jlewimin u(z) ?

When there is only one agent and only one (consumption or vol-
ume) constraint, we can easily recognize thalfiRsAcK] problem

5 A zero weight simply expresses the fact that an agent is tergsted in the
demand.

6 Which is indeed possible in our application.
7 This constraint allows for selecting only the really relavallocations.

[7, page 65], which ifNP-complete. Our problem is of course there-
fore NP-complete.

We can also notice that it is a generalization of 0—1 multitim
sional knapsack problem [18], but with a very particulaiimzation
criterion.

4.3 Benchmark

We developed a random instance generator for the fair aitota
problem described in subsection 4.2.

This generatdrcan be easily customized, using four groups of
parameters:

e general parameters: number of agents, number of objentioma
generator seed;

e objects weights parameters;

e consumption constraints parameters;

e generalized volume constraints parameters.

(uniformly distributed, or casted into different classes)the solv-
ing time. For each value, the algorithms ran on 20 differantdom
instances, with a time limit of 10 minutes per instahce

The first observation, looking at figure 2, is thaki&x is much
better than @ocoon all the instances, which is not very surprising
because all the constraints we have to deal with (even thongdr
ity combinator, if we make use of the trick presented in sec8)
are linear and are therefore efficiently processed byEX. More-
over, several parameters ofHGcCoO still need to be tuned, particu-
larly those concerning heuristi®However, GLEX can potentially
become incomplete if the weight distribution is to spreaattainly
because ELEX relaxes the problem and uses floating-point compu-
tations (this matter may probably be settled by customigiegopti-
mization parameters of ELEX). It can lead to two kinds of errors:

e the solution found by €LEX is slightly different than the real one
on some index of thieximin-optimal solution (which can induce
a huge error on the next components);

e at some step, the call to functiomaximize returns “Inconsistent”

The weights of the objects are randomly generated. Two kinds (although it should not).

of distributions are possible: a uniform distribution beem0 and
wmaz, and a distribution where the weights lay in different ctasss
The latter, corresponding approximately to the real casiefined by
two parametersf. (for examplef. = 10) which is the multiplica-
tive factor between classes, amd(for examplen. = 4), the number
of classes. The weights belonging to class [1, n.]] are randomly
chosen betweeél(fc)i and2 (f)'. Moreover, we introduce a bias so
that more demands from the low classes (less important)ttiase
from the high classes will be generated.

As previously stated, consumption constraints allow fongat-
ing unequal entitlements to the resource. In our generdtese
unequal entitlements depend on two parameters: the emtitieof
the agent having the lowest entitlement;,, and the multiplica-
tive factor between entitlementg;. Agenti has the entitlement
Tmin X (fd)zjl-

The following parameters concern the generalized volunre co
straints:

e constraints arityhs (the same for each generalized volume con-
straint);

e maximum volume allowed for each constraint (fixed or random)

e volume of each object (fixed or random).

The generator also allows for instantiating these parambtespec-
ifying the constraints tightness (which is in our cases #terbe-
tween the number of forbidden objects and the arity of the- con
straint). The volume constraints hold eg consecutive objects.

4.4 Results

The two algorithms proposed in section 3 have been testedion o
random instances. We used two different implementationghef
first algorithm: the first one with the constraint programgniibrary

Figure 2(c) shows the number of errors from the second type (t
number of errors from the first type is approximately the Same

Concerning the different weight distributions, the instes with
uniformly distributed weights are clearly more difficultolve than
the other ones. The reason is certainly that when the wemyfats
casted into different classes (say e.g. 4), solving suchmsiarnce
is almost equivalent to solving 4 independent instances foneach
class), since having one object of some class is almost murer
tant than having all the objects of its just inferior class.

Finally, one importantissue is the comparison of the twacst@int
programming algorithms. As we can see in figures 2(b) and #{d)
second algorithm (based on the multiset ordering cong}riirbet-
ter for the instances with a non-uniform weight distribatidow-
ever there is a clear advantage to the other algorithm wherseh
of weights is uniformly distributed. Moreover, figure 2(&jpsvs that
the second algorithm is far better than the first one when tineber
of agents increases. This is interesting because it cag bwitight
the areas of the parameter space where we should use onihahgor
or the other one. More tests are required to entirely chariaetthese
areas.

5 RELATED WORK

The article [1] describes an incomplete tabu search-likehotke
for solving the multiagent problem of fairly allocating ehite re-
sources. This version of the problem is actually very clogbé¢ real
application introduced in section 4. It also takes into actanost
of the numerous operational constraints. In their versiomauthors
are also interested in findingleximin-optimal allocation. However,
the leximin order is not directly considered like we did ifsthaper,
but is instead very closely represented by a collectivéyfiinction

CHoco [12], and the other one as an integer linear program using?ased on an Ordered Weighted Average operator [19]. Morgthe
CPLEX [10]. The second algorithm has only been implemented insolving techniques introduced in [1] are specifically datkd to this
CHoco. Our tests are based on an average instance with 4 agenggecise problem, and to this kind of operational admisigybdon-

having unequal entitlements, and 150 objects. Constraietsf av-
erage tightness: they forbid 10 objects out of 20 conseeudies.
The goals of the set of tests are to show the influence of thédbaum
of objects, the number of agents, and the distribution ofatbights

8 Written in Java, and available dittp://ww. cert.fr/dcsd/
THESES/ sbouver et/ benchmar k/ i ndex. ht m

straints.

9 Therefore the graphs showing solving times must be integrearefully,
since the mean of the 20 solving times is biased if some inetahave not
been solved in 10 minutes.

10 We currently use a dynamic variable ordering trying to inttde first the
objects of higher weight of the current poorer agent. It seengive better
results than classical heuristics.

3000 T T 700000 T T T T T
unif. weights Unif. weights, cardinality constraints
diff. classes ------- Unif. weights, multiset ordering constraints -
. Diff. classes, cardinality constraints -
600000 Diff. classes, muhw‘sr t ordering constraints
2500 »
500000
2000 /
° o 400000
E £
S 1500 3
o o
© © 300000
1000
200000
500
/ 100000
0 _ 0 = k=
0 50 100 150 200 250 300 350 400 20 40 60 80 100 120 140 160 180 200
Nu‘mber of objects . . . l\!umher of objects .)
(a) Impact of the number of objects on the solving time usimg.€x (b) Impact of the number of objects on the solving time ushgtivo
(4 agents, mean on 20 instances) algorithms with Gioco (4 agents, mean on 20 instances)
) unif. weigf‘]!s)) lenlf. weighté‘ cardina\it‘y conslraim‘s
diff. classes - Unif. weights, multiset ordering constraints
Diff. classes, cardinality constraints
Diff. classes, multiset ordering constraints
20 20
8
w 15 g 15
S 2
3 5
s z
g 8
£ 5
El 10 g 10
5
z
5 5
. . 77777) T
0 ‘ 4 PN 0
0 50 100 150 200 250 300 350 400 20 40 60 80 100 120 140 160 180 200
Numb(_er of objects . Nur_nber of objects .
(c) Impact of the number of objects on the number of errorsgisi (d) Impact of the number of objects on the number of instasobsed
CPLEX (4 agents, mean on 20 instances) in less than 10 minutes using the two algorithms withdZ o (4 agents,
mean on 20 instances)
600000 T T T T T T
Diff. classes, cardinality constraints
Diff. classes, multiset ordering constraints ------,
500000
400000
e s
S 300000
o
o
200000
100000
o T _—— -
20 40 60 80 100 120 140 160 180 200

Number of objects
(e) Impact of the number of objects on the computation bfxdmin-
optimal allocation (10 agents, mean on 20 instances).

Figure 2. Impact of the number of objects on the computation bfsamin-optimal allocation (4 or 10 agents).

Computation ofleximin-optimal solutions has some other appli- More difficult instances may request the use of incompletthous

cation domains. We can find theximin order, as indicated in sec-
tion 1 as a refinement of thmin operator in the study of fuzzy
constraints [2, 5]. Two algorithms dedicated to the comipartaof

like those of [17], or [18, 1], mixing linear programming atabu
search. We hope that our random benchmark generator willvall
people interested in the problem to propose and validater @h-

leximin-optimal solutions has been published in [3]. These algo-proaches.

rithms work by enumerating, at each step, all the subsetszzyf
constraints (corresponding to our agents), so we thinkttieit ef-
ficiency are questionable. However, these algorithms hage tex-
perimented.

Even if fairness does not seem to be widely studied in combina

torial optimization, we can advert some work, among othiosn
Pesant and Régin [16], dealing with a global constrainiaiadd to
criteria balancing. The filtering procedures introducedhe latter
paper are based on statistic rules. This approach is an lagpeh
ternative to ours for dealing with equity. Applied to our plem, it
should be linked with an optimization criterion that wouldapro-
vide a kind of efficiency.

6 CONCLUSIONS AND FUTURE WORK

We studied in this paper the followirfgir allocation problem. A set
of indivisible goods has to be allocated to a set of agents. jds-
sible allocations are subject to some admissibility casts. Each
agent has its own utility function over the set of admisstileca-
tions, and we have to select a fair admissible allocatioirnEss is-
sues are expressed using the notiordesfimin-optimal allocation
over the agents utilities, which is a Pareto-optimal refiaetrof the
maximin solution. This concept déximin-optimal allocation po-
tentially applies to each multiagent problem, where famis a key
point.

The main contributions of this paper is the description af algo-
rithms dedicated to the computation deaimin-optimal allocation,
in a constraint programming framework. The first one is o
and is based on the cardinality meta-constrAthteast. The second
one is a classical branch-and-bound based on the adaptdtim
existing algorithm [6] that enforces global arc-consistefor a mul-
tiset ordering constraint. The constraint programmingniaork is
particularly appealing here, as it allows for describingasately our
particular algorithms on the one hand, and on the other hanskt of
admissibility constraints, and the agents utility funngoThis sepa-
ration is all the more relevant since in real applicationestof the
admissibility constraints are not fixed and do evolve with #ppli-
cation.

The two proposed algorithms are linked to a real-world aagli
tion: fair sharing of satellite resources. This applicati@ms inspired
a simplified multiagent allocation problem, for which we di®ped
a random instance generator, whose generated instancsigife
cantly close to real instances. Using this generator we bega able
to test two distinct implementations of the first algorithom¢ with
the constraint programming tooH®©co[12], and the other using the
integer linear programming toolEx 10.0 [10]), and one for the
second algorithm, using ©®©co. The aim was to compare our two

CP algorithms on a simple problem. The results of the impleme
tations using @oco clearly show that none of the two algorithms

is always better than the other one, and that it depends oimpla¢
parameters of the instance to be solved. The results alswo e
CpLEX is clearly better than @oco on this particular problem, but
this is not very surprising because our problem particufasyfor
ILP modelling.

This paper is an algorithmic approach, among other poseit#s
that may be more efficient. We have only studied here exadtadst

Among the possible extensions of this work, we can suggest:

e studying and using softer and more general modeling of tine fa
ness requirement, replacing th&imin order by a parameterized
collective utility function realizing some compromisestieen
egalitarianism and classical utilitarianism;

e applying our algorithms to other practical fields, like care
tion of balanced timetables or sharing of airspace and dirge
sources.

REFERENCES

[1] N. Bianchessi, J.-F. Cordeau, J. Desrosiers, G. Laparid V. Ray-
mond, ‘A heuristic for the multi-satellite, multi-orbit dnmulti-
user management of earth observation satellit€slropean Jour-
nal of Operational Research(available online February 2006).
doi:10.1016/j.ejor.2005.12.026.

D. Dubois, H. Fargier, and H. Prade, ‘Refinements of theiman ap-
proach to decision-making in fuzzy environmemiyzzy Sets and Sy;st.
81, 103-122, (1996).

D. Dubois and P. Fortemps, ‘Computing improved optin@utons to
max-min flexible constraint satisfaction problem&yropean Journal
of Operational Resear¢t{1999).

H. Fargier, J. Lang, M. Lemaitre, and G. Verfaillie, tage équitable
de ressources communes. (1) Un rieogénéral et son application
au partage de ressources satellitaires. (2) élementomplexite et
d’algorithmique’, Technique et Science Informatiquex3(9), 1187—
1238, (2004).

H. Fargier, J. Lang, and T. Schiex, ‘Selecting prefersadutions in
fuzzy constraint satisfaction problems’,oc. of EUFIT'93 Aachen,
(1993).

A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. WalshMultiset
ordering constraints’, ifProc. of IJCAI'03 (February 2003).

M. R. Garey and D. S. Johnso@pmputers and Intractability, a guide
to the theory of NP-completene$seeman, 1979.

R. S. Garfinkel and G. L. Nemhausénteger ProgrammingWiley-
Interscience, 1972.

P. Van Hentenryck, H. Simonis, and M. Dincbas, ‘Constraatisfac-
tion using constraint logic programmindArtificial Intelligence 58(1-
3), 113-159, (1992).
ILOG. Cplex 10.0.
cplex/.

R. L. Keeney and H. RaiffaDecisions with Multiple Objectives: Pref-
erences and Value Tradeqfftohn Wiley and Sons, 1976.

F. Laburthe, ‘CHOCO : Implémentation du noyau d’untsys de con-
traintes’, inActes des JNPC-QMMarseille, France, (2000).ht t p:

/I sour cef orge. net/ proj ects/choco.

M. Lemaitre, G. Verfaillie, and N. Bataille, ‘Explaitg a Common
Property Resource under a Fairness Constraint: a Case' Stuéyoc.

of IJCAI-99 pp. 206-211, Stockholm, (1999).

H. Moulin, Axioms of Cooperative Decision MakinGambridge Uni-
versity Press, 1988.

H. Moulin, Fair division and collective welfateVIT Press, 2003.

G. Pesant and J-C. RégirsPREAD: A balancing constraint based on
statistics’, inProc. of CP’05 Sitges, Spain, (2005).

M. Vasquez and Jin-Kao Hao, ‘A logic-constrained kreagks formu-
lation and a tabu algorithm for the daily photograph schiedubf an
earth observation satelliteJpurnal of Computational Optimization and
Applications 20(2), 137-157, (2001).

M. Vasquez and J.K. Hao, ‘A Hybrid Approach for the 0-1 Iktii-
mensional Knapsack Problem’, iroc. of IJCAI-01 volume 1, pp.
328-333, (August 2001).

R. Yager, ‘On ordered weighted averaging aggregatiparators in
multicriteria decision making’|EEE Transactions on Systems, Man,
and Cybernetics18, 183-190, (1988).

(2]

(3]

[4]

(5]

(6]
[7]
(8]
[9]

[10] http://ww. il og. conl products/
[11]

[12]

(23]

[14]

[15]
[16]

[17]

(18]

[19]

