
Comparison of two constraint programming algorithms
for computing leximin-optimal allocations

Sylvain Bouveret12 and Michel Lemaı̂tre1

Abstract.
We propose two constraint programming algorithms for solving

the following problem: fairly and efficiently allocate a finite set of
objects to a set of agents, each one having their own utilities, un-
der admissibility constraints. Our algorithms compute an allocation
maximizing theleximin order on the utility profiles of the agents.
Our main contribution is the use of a cardinality meta-constraint on
the one hand, and an adaptation of an existing algorithm for enforc-
ing a multiset ordering constraint on the other hand.

Moreover, we describe the application domain that motivated this
work: sharing of satellite resources. We extract from this real-world
application a simple and precise fair allocation problem that allows
for testing and evaluating our algorithms, using a benchmark gener-
ator. The implementations of both algorithms have been tested using
the constraints programming tool CHOCO [12], and a translation of
the first algorithm to integer linear programming has been tested us-
ing CPLEX [10].

1 INTRODUCTION

Efficiently and fairly allocating a bounded set of resourcesto sev-
eral agents having their own preferences is a rather generalproblem
having a wide scope of applications. Some examples can easily be
found: balanced timetables, fair share of communication networks,
allocation of airport and airspace resources to several airlines, fair
share of a constellation of Earth observation satellites.

Within this paper, this problem will be restricted using four ad-
ditional hypotheses: 1) the set of resources is discrete andfinite,
and is thus equivalent to a finite set of indivisible and distinct ob-
jects; 2) the agents preferences over the set of admissible allocations
are numerically expressed; 3) we seekfair andefficientallocations
(the meaning of these words will be explained later); 4) the optimal
allocation is computed in acentralizedmanner, by a “benevolent ar-
bitrator”, assumed to be fair, and obeying principles that are accepted
by all the agents. In other words, we will not deal with distributed al-
location procedures. We may notice that many real-world problems
(like those cited before) still match these four hypotheses.

This problem has been studied in different active research commu-
nities: Operational Research (OR), Artificial Intelligence (AI), Mi-
croeconomy, Social Choice Theory. Our contribution is inspired by
all of them: from the last two we borrow the idea of representing the
agents preferences byutility levels, and we adopt theleximin pre-
order for conveying the fairness and efficiency requirements. OR and

1 Office National d’́Etudes et de Recherches Aérospatiales – DCSD. 2, av-
enueÉdouard Belin, B.P. 4025. F-31055 Toulouse cedex 4

2 Institut de Recherche en Informatique de Toulouse. 118, route de Narbonne.
F-31062 Toulouse cedex.

AI provide theCSP and constraint programming frameworks as ef-
fective and flexible computation and modeling tools.

Numerical preferences and utilities Let S be a finite set of ad-
missible alternatives concerningn agents (each one having her own
preferences), among which an arbitrator must choose one. The most
classical model describing this situationwelfarism(seee.g.[11, 15]).
According to this model (which will be used in this paper), the de-
cision of the arbitrator is based on the satisfaction levelsenjoyed by
the individual agents, and on those levels only. These levels are mea-
sured, in the cardinal version of this model, by a numerical index
giving theindividual utility ui(s) of agenti concerning alternatives.
We admit here that the individual utilities are comparable between
the agents (in other words, they are expressed in a common util-
ity scale). Thus we can map each alternatives to a utility profile
〈u1(s), . . . , un(s)〉, and moreover this is the only relevant informa-
tion we use to compare two alternatives.

An easy way to compare individual utility profiles is to aggregate
each of them into acollective utilityindex, standing for the collective
welfare of the agents community. Ifg is a well-chosen aggregation
function, we thus have a collective utility functionuc that maps each
alternatives to a collective utility levelg(u1(s), . . . , un(s)). An op-
timal alternative is one of those maximizing the collectiveutility.

Fairness and efficiency using the leximin preorder The main
difficulty of our fair allocation problem lays on the fact that we have
to reconcile the contradictory wishes of the agents. There is generally
no allocation that fully satisfies everyone; we therefore request ag-
gregation functionsg leading to fair and efficient compromises. This
notion of efficiency (simply meaning that resources have to be used
as much as possible) is usually represented by Pareto-optimality1.

The problem of choosing the right aggregation functiong is far
beyond the scope of this paper. We will only describe the two most
usual ones, that stand for two rather extreme points of view on social
welfare2. The first one is the sum function, that leads to theclassi-
cal utilitarianism, and the second one is themin function, used by
egalitarianists. The first function is not very relevant to our particular
problem, since the resulting collective utility does not depend on the
balancing of the utility profile. On the contrary, the minimum func-
tion is particularly well-suited for the kind of problems inwhich fair-
ness plays an important role, because the optimal decisionsare those
maximizing the satisfaction of the less happy of the agents.However,

1 A decision is Pareto-optimal if and only if we cannot strictly increase the
satisfaction of an agent unless we strictly decrease the satisfaction of an-
other agent.

2 Some compromises between these two extremes exist. Seee.g. [15, page
68] (sum of powers) or [19] (Ordered Weighted Averaging aggregators)

a major drawback of the minimum function, classically studied in the
community of fuzzyCSP, and usually called “drowning effect” [3],
is that this function leaves many alternatives indistinguishable. Thus
for example, the utility profiles〈0, . . . , 0〉 and〈1000, . . . , 1000, 0〉
both produce the same collective utility0, in spite of the fact that the
second one appears to be far better than the first one. In otherwords,
this aggregation function can lead to non Pareto-optimal decisions,
which is not desirable.

Two classical refinements of the order induced by themin func-
tion overcoming this drawback can be proposed: the discrimin and
leximin orders [5]. The first one is not a total preorder. The second
one is classically used in Social Choice [14], and this is therefine-
ment that we will use in this paper. Before introducing it formally in
section 2, we describe it informally. Comparing two utilityprofiles
using the leximin preorder is not based on an aggregation function,
but on the profiles themselves. First, the two minimal valuesof the
profiles are compared: if they are different, the biggest onewins; oth-
erwise, these two minimal values are removed from the utility pro-
files and we repeat the same operation on the two new profiles. An
equivalent procedure is to sort each profile in non-decreasing order
and then to compare them using the lexicographic order.

This paper is organized as follows: section 2 formally defines our
problem using theCSP framework. Section 3 presents our main
contribution: it describes two algorithms for computing aleximin-
optimal alternative using constraint programming. These algorithms
are based on existing constraints; our contribution is to use them to
fit the needs of our problem for fairness and efficiency.

Section 4 deals with the motivating real-world application: shar-
ing a constellation of Earth observation satellites. We extract from
this real-world application a simple and precise fair allocation
problem that allows for testing and evaluating our algorithms, us-
ing a benchmark generator. The implementations of the two algo-
rithms have both been tested using the constraints programming tool
CHOCO [12], and a translation of the first algorithm to integer linear
programming has been tested using CPLEX [10]. Section 5 presents
related work, just before conclusion and future work, section 6.

2 FRAMEWORK

The constraint programming framework is widely used for solv-
ing many different combinatorial problems such as timetable prob-
lems, scheduling problems, frequency allocation problems. . . This
paradigm is based on the notion ofconstraints network. A constraints
network is made of a set of variablesX = {x1, . . . , xp}, wheredxi

is the finite set of possible values forxi (we assumedxi
⊂ N, and we

use the following notations:xi = min(dxi
) andxi = max(dxi

)),
and of a set of constraintsC. Each constraintC ∈ C describes a set
of allowed tuplesR(C) over a set of variablesX(C).

An instantiationv of a setS of variables is a function that maps
each variablex ∈ S to a valuev(x) of its domaindx. If S = X , this
instantiation is said to be complete, otherwise, it is partial. If S′ (S,
the projection of an instantiation ofS overS′ is the restriction of this
instantiation toS′, and it is writtenv↓S′ . An instantiation is said
to be consistent if and only if it satisfies every constraint.Given a
constraints network, the problem of finding whether there exists a
complete and consistent instantiation to this constraintsnetworks is
called Constraint Satisfaction Problem (CSP) and isNP-complete.
Such an instantiation, if it exists, is called a solution of theCSP.

There is an optimization problem derived from theCSP (coming
from the max-CSP extension of constraint satisfaction problems),
where a special variableo plays the role ofobjective variable. A

solution of an instance of this optimization problem is a complete
consistent instantiationbv of the constraints network such thatbv(o) =
max{v′(o)|v′ complete consistent instantiation}.

Let −→x = 〈x1, . . . , xn〉 be a vector of numbers; we write−→x ↑ =
〈x↑

1, . . . , x
↑
n〉 the vector made of every components of−→x , sorted in

non-decreasing order. We now define the leximin preorder over inte-
ger vectors:

Definition 1 (leximin preorder [14]) Let−→x and−→y be two vectors
of Nn. −→x and−→y are saidleximin-indifferent (written−→x ∼leximin
−→y) if and only if−→x ↑ = −→y ↑. The vector−→y is leximin-preferred to
−→x (written−→x ≺leximin

−→y) if and only if∃i ∈ J0, n− 1K such that
∀j ∈ J1, iK, x

↑
j = y

↑
j andx

↑
i+1 < y

↑
i+1. We write−→x �leximin

−→y
for −→x ≺leximin

−→y or −→x ∼leximin
−→y .

The binary relation�leximin is a total preorder.
In a collective decision making problem, aleximin-optimal solu-

tion is an alternative whose associated utility profile is maximal for
the preorder�leximin. The main advantage of such a solution is that
it is bothmin-optimal and Pareto-efficient.

The CSP optimization variant allows for encoding the problem
of maximizing the egalitarian collective utility (withg = min) of n

agents: we introducen variables〈u1, . . . , un〉 corresponding to the
utilities of each agent, and one objective variableuc, linked with the
other variables by the set of constraints{C1, . . . , Cn}, with Ci =
(uc ≤ ui).

However, expressing the problem of computing aleximin-optimal
decision in theCSP framework is not straightforward. It indeed
needs a slight modification of the optimization version of the CSP.
Let us consider the following problem:

[L EXIMIN -OPTIMAL]

Inputs: a constraints network(X ,D, C); a vector of vari-
ables−→u = 〈u1, . . . , un〉 (∀i, ui ∈ X), calledob-
jective vector.

Output : “Inconsistent” if there is no complete consistent in-
stantiation. Otherwise a complete consistent instan-
tiation bvs such that for all complete consistent in-
stantiationv, v(−→u) �leximin bvs(

−→u).

We propose two generic algorithms for solving this problem.The
first one is based on a cardinality meta-constraint, and the second one
is based on a multiset ordering constraint.

3 TWO ALGORITHMS

3.1 Using cardinality constraints

The main idea of algorithm 1 is to iteratively compute each com-
ponent of the sorted version of the optimal objective vector(i.e. the
vector of values of theleximin-optimal instantiation of−→u). Thus
we introduce at lines 3 and 4 a vector of optimization variables, the
role of each variableyi being to compute the value of the indexi

of the leximin-optimal vector. During each iterationi of the loop
6..10, a cardinality constraint corresponding to the currently com-
puted component is added (line 7), and then we compute (line 8) the
maximal value of variableyi such that the current constraints net-
work (corresponding to the initial one, added with variables yk and
with cardinality constraints from previous iterations) has a solution.
The variableyi is fixed to this optimal value (line 9) for all the fol-
lowing iterations. In line 10 the domain of the next variableyi+1 is

2

Algorithm 1 : Pseudo-code of an algorithm that computes a
leximin-optimal solution of a constraints network using cardi-
nality constraints.

inputs : a constraints network(X ,D, C); a vector〈u1, . . . , un〉
of variables fromX

output: A solution to the problem [LEXIMIN -OPTIMAL] or
“Inconsistent”

if solve(X ,D, C) =”Inconsistent” then1

return “Inconsistent”2

X ′ ← X ∪ {y1, . . . , yn};3

D′ ←4

D ∪ {Jmini(ui), maxi(ui)K, . . . , Jmini(ui), maxi(ui)K};
C′ ← C;5

for i← 1 to n do6

C′ ← C′∪{AtLeast({u1 ≥ yi, . . . , un ≥ yi}, n−i+1)};7

bv ←maximize(yi, (X
′,D′, C′));8

dyi
← {bv(yi)};9

dyi+1
← Jbv(yi), maxi(ui)K;10

return bv↓X ;11

safely restricted, but this restriction does not seem to be essential (it
does not decrease significantly the execution time).

The algorithm uses the cardinality meta-constraintAtLeast:

Definition 2 (Meta-constraint AtLeast) Let Γ be a set ofp con-
straints, and k ∈ J1, pK be an integer. The meta-constraint
AtLeast(Γ, k) is the constraint that holds on the union of the
scopes of the constraints inΓ, and that allows a tuple if and only
if at leastk constraints fromΓ are satisfied.

This meta-constraint3 is introduced asconstraint combinator, for
example in [9]. The role of this constraint in algorithm 1 is to enforce
a lexicographic order constraint (the set of cardinality constraints
obliges the next solutions to beleximin-superior to the current par-
tial leximin-optimal vector).

The two functionssolveandmaximize (the detail of which is the
concern of solving techniques for constraints satisfaction problems)
of lines 1 and 8 respectively return one solution of the constraints net-
work (X ′,D′, C′) (or “Inconsistent” if such a solution does not ex-
ist), and an optimal solution of the constraints network(X ′,D′, C′),
with objective variabley (or “Inconsistent” if such a solution does
not exist). We assume – contrary to usual constraints solvers – that
these two functions do not modify the input constraints network.

Let us illustrate how the algorithm works with an example:
We consider a basic resource allocation a1 a2 a3

o1 3 3 3
o2 5 9 7
o3 7 8 1

problem, where 3 objects have to be allo-
cated to 3 agents, with the following con-
straints: (1) each agent must get one and
only one object, and (2) one object cannot
be allocated to more than one agent. A utility is associated with each
pair (agent, object), with respect to the array above.

This problem has 6 feasible solutions (one for each permutation of
J1, 3K), producing the 6 utility profiles shown in the following array:

p1 p2 p3 p4 p5 p6

utility for a1 3 3 5 5 7 7
utility for a2 9 8 3 8 3 9
utility for a3 1 7 1 3 7 3

3 The prefix “meta” indicates that this constraints has some other constraints
as parameters.

The algorithm runs in 3 steps:
Step 1: We introduce a variabley1 and we look for the maximal
value by1 of y1 such that each (at least 3) agent gets at leasty1. We
find by1 = 3.
Step 2: We add the constraint that each agent gets at leastby1 = 3
(thus removing profilesp1 andp3). Then we introduce a variabley2

and we look for the maximal valueby2 of y2 such thatat least two
agents get at leasty2. We find by2 = 7.
Step 3:We add the constraint that at least 2 agents get at leastby2 = 7
(thus removing profilep4). Then we introduce a variabley3 and we
look for the maximal valueby3 of y3 such thatat leastone agent gets
at leasty3. We find by3 = 9. Only one instantiation maximizesy3: p6.
The corresponding allocation is:a1 ← o3, a2 ← o2 anda3 ← o1.

Proposition 1 If the two functionsmaximize andsolve are both cor-
rect and both halt, then algorithm 1 halts and returns a solution to
the problem [LEXIMIN -OPTIMAL].

Proof: If functionssolveandmaximize both halt, then obviously
algorithm 1 halts.

If the initial constraint network has no solution, and if function
solve is correct, then algorithm 1 returns “Inconsistent”. In thefol-
lowing, we will suppose that the initial constraint networkhas at least
one solution.

We will write bvi for the instantiation returned at iterationi by
function maximize, and bvs a solution to the problem [LEXIMIN -
OPTIMAL].

Proof sketch : In order to prove that the algorithm is cor-
rect, we show that the call tomaximize never returns “In-
consistent”, and thatcvn(−→u)↑ = bvs(

−→u)↑. To do that, we
make use of induction on the following hypothesis:(Hi) =“

bvi exists and∀j ≤ i, bvi(
−→u)↑j = bvi(yj) = bvs(

−→u)↑j

”
.

At iteration 1, the constraintAtLeast({u1 ≥ y1, . . . ,
un ≥ y1}, n) is equivalent to the constrainty1 ≤
mini(ui). Thereforemaximize returns an extensionbv1 of a so-
lution of the initial constraint network, such thatbv1(y1) =
max{mini(v1(ui))|v1 is a complete consistent instantiation}. Thus
we havebv1(y1) = bv1(

−→u)↑1, Moreover, bv1(y1) ≥ bvs(
−→u)↑1 if maxi-

mize is correct (there is a consistent extension ofbvs on(X ′,D′, C′)).
We cannot havebv1(y1) > bvs(

−→u)↑1, because it would mean that
bv1(
−→u)↑1 > bvs(

−→u)↑1 and thus thatbv1 would be a solutionleximin-
superior tobvs, which is not possible. This proves(H1).

Let us show that(Hi)⇒ (Hi+1), 1 ≤ i ≤ n− 1.
Let us first prove thatdvi+1 exists (that is, the constraint network

of iterationi + 1 has at least one solution).
The instantiationbvs is the projection overX of a solution of the

constraint network at iterationi + 1. Indeed:
— by definition, bvs satisfies all the constraints of the initial network;
— ∀j ≤ i, bvi(yj) = bvs(

−→u)↑j (following from (Hi)), thus bvs(
−→u)↑j

and all its following components in the sorted vector (that isn−j+1
components ofbvs(

−→u)) are greater or equal tobvj(yj), which satisfies
constraintAtLeast at iterationj.
— bvs(

−→u)↑i+1 ≥ bvs(
−→u)↑i by definition, thus there is at least one

consistent value foryi+1 : bvi(yi).
Therefore the constraint network at iterationi + 1 has at least one

solution (thusdvi+1 exists).
Moreover, for allj ≤ i + 1, dvi+1(

−→u)↑j ≥ dvi+1(yj) (otherwise
at least one of the constraintsAtLeast is violated). By noticing that
an admissible allocation for(X ′,D′, C′) at iterationi + 1 is also
admissible at iterationi (because we only add a constraint and reduce
the domain of variables between two iterations), we deduce that we
cannot havedvi+1(

−→u)↑j > dvi+1(yj). Indeed, if it were the case, since
dvi+1(yj) = bvj(yj) (because for eachj < i + 1, the domain of
yj is a singleton),dvi+1 would have been stricly better thanbvj for

3

yj at iterationj, which is not possible ifmaximize is correct. Thus
∀j ≤ i + 1, dvi+1(

−→u)↑j = dvi+1(yj), which proves the first equality.

The extension ofbvs that instantiates the valuebvs(
−→u)↑i+1 to yi+1 is

feasible at iterationi + 1 (it satisfies, as well as the other constraints,
the constraintAtLeast of iterationi + 1). Thereforedvi+1(yi+1) ≥

bvs(
−→u)↑i+1. If we had dvi+1(yi+1) > bvs(

−→u)↑i+1, then the projec-
tion of dvi+1 overX would be a solution of this constraint network
such that∀j < i + 1, dvi+1(

−→u)
↑

j
= bvs(

−→u)
↑

j
and dvi+1(

−→u)
↑

i+1
>

bvs(
−→u)

↑

i+1
, thus aleximin-superior solution thanbvs, which is not

possible. We thus havedvi+1(yi+1) = bvs(
−→u)↑i+1, which finally

proves(Hi+1).
By induction, we have: (1)cvn is a solution of the constraint net-

work at iterationn, thusa fortiori its projection overX is a solution,
and (2) for eachi, cvn(−→u)

↑

i
= bvs(

−→u)
↑

i
, thuscvn(−→u) and bvs(

−→u) are
leximin-indifferent.

Therefore the instantiation returned by algorithm 1 is a solution of
the problem [LEXIMIN -OPTIMAL]. �

Constraint programming suits particularly to the implementation
of this algorithm; however, the cardinality meta-constraint is also ex-
pressible using the linear programming framework [8, p.11], by in-
troducingn 0–1 variables{δ1, . . . , δn}. The cardinality constraint
AtLeast({x1 ≥ y, . . . , xn ≥ y}, k) is then equivalent to the set of
linear constraints{x1 + δ1y ≥ y, . . . , xn + δny ≥ y,

Pn

i=1
δi ≤

n− k}.

3.2 Using a multiset ordering constraint

The second procedure we present for computing aleximin-optimal
solution of a constraints network is based on the multiset ordering
constraint introduced in [6]. In this paper, the authors describe an
algorithm for enforcing generalized arc-consistency4 on a multiset
ordering constraint. Informally, such a constraint works on two mul-
tisets of variablesM andN (unordered lists of variables where repe-
tition is allowed), and ensures thatM �m N ,≺m being the standard
strict order on multisets:M ≺m N if and only if eitherM is empty
andN is not, or the largest value inM is smaller than the largest
one inN , or they are the same and, if we eliminate one occurrence
of the largest value from bothM andN , the resulting two multisets
are ordered.

We can notice that this order also works for vectors of variables
(that can be viewed as multisets), and that it is close to our defini-
tion of theleximin-ordering: the only difference is that at each step,
we focus on the smallest value instead of the biggest one. Theal-
gorithm described in [6] is based on two vectors of lengthu − l

(with u = max({Mi|i ∈ J0, |M |K} ∪ {Nj |j ∈ J0, |N |K}) and
l = min({Mi|i ∈ J0, |M |K} ∪ {Nj |j ∈ J0, |N |K})) called oc-
currence vectors. The basic algorithm explicitly computes these two
vectors and runs in timeO(|N |+|M |+u−l). However, in our partic-
ular case,u−l can be rather huge, as we will see in the description of
the application, in section 4. We thus use a variant of this algorithm,
suggested in [6], that does not compute the occurrence vectors, and
runs in timeO(|N | log(|N |) + |M | log(|M |)). The latter algorithm
can also be easily translated to enforce the strictleximin ordering
between one vector of variables and one vector of integers.

We define the constraintLeximin :

Definition 3 (Constraint Leximin) Let−→x be a vector of variables

and
−→
λ be a vector of integers. The constraintLeximin(

−→
λ ,−→x)

4 A constraint is generalized arc-consistent if and only if for each variablex in
the constraint, for each valuev ∈ dx, if x is assigned tov, then compatible
values exist for all the other variables in the constraint.

concerns every variables belonging to−→x , and allows a tuple
−−→
v(x)

if and only if
−→
λ ≺leximin

−−→
v(x).

Algorithm 2 : Pseudo-code of an algorithm that computes a
leximin-optimal solution of a constraints network using a
leximin constraint.
inputs : a constraints network(X ,D, C); a vector〈u1, . . . , un〉

of variables fromX
output: A solution to the problem [LEXIMIN -OPTIMAL] or

“Inconsistent”

v ← solve(X ,D, C);1

while v 6=”Inconsistent” do2

bv ← v;3

C ← C ∪ {Leximin(bv(−→u),−→u)};4

v ← solve(X ,D, C);5

if bv 6= null then return bv;6

else return “Inconsistent”;7

The principle of the algorithm is rather simple. At the beginning,
it computes a solution to the constraints network, and at each step
it tries to find a better solution, as regards the strictleximin order,
until the constraints network becomes inconsistent. Of course, the
algorithm can be implemented in a branch-and-bound manner,i.e.
without restarting the search process after a solution has been found
(this is what we actually implemented).

Proposition 2 If the functionsolve is correct and halts, then al-
gorithm 2 halts and returns a solution to the problemLEXIMIN -
OPTIMAL .

Proof: If (X ,D, C) is inconsistent, thenbv is never initialized,
and thus the algorithm returns “Inconsistent”. Otherwise,the loop
2..4 is entered at least once, andbv is initialized (thus preventing the
algorithm from returning “Inconsistent”). In this case, itreturns a
complete consistent instantiationbv of the initial constraints network
(X ,D, C), because it is consistent with an sup-set ofC (and therefore
with C). Furthermore, ifsolve is correct, there is no other complete
consistent instantiationv′ of (X ,D, C) such thatv′(−→u) ≻leximin

bv(−→u) (otherwise the last call tosolvewould not have returned “In-
consistent”).�

4 A REAL-WORLD APPLICATION: SHARING
A CONSTELLATION OF SATELLITES

We now describe the real-world application that originallymotivated
this work, and that allowed for carrying out realistic experiments and
evaluations.

4.1 Problem description

The application concerns the common exploitation by several agents
(countries, companies, civil or military agencies, etc.),of a constella-
tion of Earth Observation Satellites (EOS). The mission of an EOS is
to acquire images (photographies) of specified areas on the Earth sur-
face, in response to observation demands from users, as illustrated on
figure 1. Such a satellite is operated by an Image Programmingand
Processing Center, the role of which is to collect each day observa-
tion demands from users, and to schedule consequently the acquisi-
tions for the next day. Thus the Center selects, among all theobser-
vation demands concerning the same day, those that will be satisfied,

4

visibility corridor
boundaries

satellite

a photography
strip currently
being acquired

orbit

unacquired photographies

acquired photographies

Figure 1. Acquisition of photography strips by an Earth Observation
Satellite.

i.e. the set of photographies that will be acquired the next day bythe
constellation. This set of satisfied demands is therefore a day-to-day
allocationof demands to agents.

The physical constraints and the huge number of demands con-
cerning some specific areas generate some conflicts between de-
mands. It is therefore generally impossible to satisfy simultaneously
all the registered demands for the same day. This set of constraints
defines the set ofadmissible allocations.

Here are some typical orders of magnitude concerning the real
application: the number of agents generally lays between 3 and 6.
Hundreds of demands are registered each day, among which about
100 to 200 will be satisfied.

The demands of an agent are of unequal importance. Each agent
expresses the relative importance of its demands by giving them a
weight, which is a positive or zero integer5, and which implicitly for-
mulates additive preferences: if two sets of demands have anequal
sum of weights, then the concerned agent is indifferent between re-
ceiving the first set of demands or the second one. Theindividual
utility of an allocation for an agent is the sum of the weights of the
agent’s demands that are satisfied by the allocation. A process ofnor-
malization of utilities– the detail of which is beyond the scope of this
paper – is used, in order to make the individual utilities comparable.
We only deal here with normalized utilities and weights.

All the agents did not equally fund the constellation, thus lead-
ing to unequal “rights to return on investments”. There exist differ-
ent ways to take unequal entitlements into account. One of the so-
lutions, that we will use in this paper, is to translate this inequality
by some consumption constraints: each agent has the right toa max-
imal amount of resource consumption, and this amount is different
for each agent. These consumption constraints are added to the set of
admissibility constraints.

Beyond these unequal entitlements, the allocation of demands to
agents has to be fair. Several different solutions to this fair allocation
problem has been proposed in [13] and in [4]. One of the proposed
protocols to address fairness issues consists in choosing an allocation
that maximizes theleximin order on individual utility profiles.

5 A zero weight simply expresses the fact that an agent is not interested in the
demand.

4.2 A fair allocation problem

We have extracted from this real-world application a simplified fair
allocation problem. It can be viewed as an extension of problem
[L EXIMIN -OPTIMAL], described in section 2.

A set of objects stands for the set of demands of our application.
The conflicts between demands are approximately (but reasonably)
represented by linear “generalized volume constraints”. We have to
notice that in this problem (1) all the objects will not necessarily be
attributed, and (2) the same object can possibly be allocated to several
agents6.

Here is the formal description of this fair allocation problem. We
describe first the inputs:

• A is a set ofagents;
• O is a set ofobjectsto attribute to agents;
• wio is a positive or zero number representing theweightof object

o according to agenti;
• ro is theresource consumptionof objecto;
• rmaxi is themaximal amount of resource consumptionallowed

for agenti;
• C is a set ofgeneralized volume constraints;
• vco is thevolumeof objecto in the generalized volume constraint

c;
• vmaxc is the maximal volumein the generalized volume con-

straintc.

Then we define the following variables:

• xio = 1 if objecto is allocated to agenti, 0 otherwise, witho ∈ O,
i ∈ A. The possible instantiations of the variablesxio stand for
the set of possible allocations (among which the admissibleones
are);

• ui =
P

o∈O
xio · wio is the individual utility of agenti, i ∈ A;

• so = maxi∈A xio = 1 is objecto is allocated to at least one
agent,0 otherwise.

The problem is to find an allocationx maximizing theleximin
order on the individual utility profiles〈ui〉i∈A, given the following
admissibility constraints:

• wio = 0 ⇒ xio = 0 (if an agent gives weight 0 to an object, this
object will not be allocated to her7);

•
P

o∈O
xio · ro ≤ rmaxi, for all i ∈ A (constraints on the set of

maximal consumptions of resources);
•

P
o∈O so · vco ≤ vmaxc, for all c ∈ C (generalized volume

constraints).

Complexity of the problem Given an instance of the fair alloca-

tion problem, we write
−−→
u(x) the individual utility profile resulting

from the complete allocationx (i.e. in which all thexio variables
are instantiated). Let us consider the decision problem associated to
the fair allocation problem, defined as follows:Given an instance

of the fair allocation problem and a utility profile
−→
U , does an ad-

missible allocationx (satisfying all the constraints) exist, such that
−→
U �leximin

−−→
u(x) ?

When there is only one agent and only one (consumption or vol-
ume) constraint, we can easily recognize the [KNAPSACK] problem

6 Which is indeed possible in our application.
7 This constraint allows for selecting only the really relevant allocations.

5

[7, page 65], which isNP-complete. Our problem is of course there-
foreNP-complete.

We can also notice that it is a generalization of 0–1 multidimen-
sional knapsack problem [18], but with a very particular optimization
criterion.

4.3 Benchmark

We developed a random instance generator for the fair allocation
problem described in subsection 4.2.

This generator8 can be easily customized, using four groups of
parameters:

• general parameters: number of agents, number of objects, random
generator seed;

• objects weights parameters;
• consumption constraints parameters;
• generalized volume constraints parameters.

The weights of the objects are randomly generated. Two kinds
of distributions are possible: a uniform distribution between0 and
wmax, and a distribution where the weights lay in different classes.
The latter, corresponding approximately to the real case, is defined by
two parameters:fc (for examplefc = 10) which is the multiplica-
tive factor between classes, andnc (for examplenc = 4), the number
of classes. The weights belonging to classi ∈ J1, ncK are randomly
chosen between1

2
(fc)

i and3

2
(fc)

i. Moreover, we introduce a bias so
that more demands from the low classes (less important) thanthose
from the high classes will be generated.

As previously stated, consumption constraints allow for simulat-
ing unequal entitlements to the resource. In our generator,these
unequal entitlements depend on two parameters: the entitlement of
the agent having the lowest entitlementrmin, and the multiplica-
tive factor between entitlementsfd. Agent i has the entitlement
rmin × (fd)

i−1.
The following parameters concern the generalized volume con-

straints:

• constraints aritynS (the same for each generalized volume con-
straint);

• maximum volume allowed for each constraint (fixed or random);
• volume of each object (fixed or random).

The generator also allows for instantiating these parameters by spec-
ifying the constraints tightness (which is in our cases the ratio be-
tween the number of forbidden objects and the arity of the con-
straint). The volume constraints hold onnS consecutive objects.

4.4 Results

The two algorithms proposed in section 3 have been tested on our
random instances. We used two different implementations ofthe
first algorithm: the first one with the constraint programming library
CHOCO [12], and the other one as an integer linear program using
CPLEX [10]. The second algorithm has only been implemented in
CHOCO. Our tests are based on an average instance with 4 agents
having unequal entitlements, and 150 objects. Constraintsare of av-
erage tightness: they forbid 10 objects out of 20 consecutive ones.
The goals of the set of tests are to show the influence of the number
of objects, the number of agents, and the distribution of theweights

8 Written in Java, and available athttp://www.cert.fr/dcsd/
THESES/sbouveret/benchmark/index.html

(uniformly distributed, or casted into different classes)on the solv-
ing time. For each value, the algorithms ran on 20 different random
instances, with a time limit of 10 minutes per instance9.

The first observation, looking at figure 2, is that CPLEX is much
better than CHOCO on all the instances, which is not very surprising
because all the constraints we have to deal with (even the cardinal-
ity combinator, if we make use of the trick presented in section 3)
are linear and are therefore efficiently processed by CPLEX. More-
over, several parameters of CHOCO still need to be tuned, particu-
larly those concerning heuristics10. However, CPLEX can potentially
become incomplete if the weight distribution is to spread, certainly
because CPLEX relaxes the problem and uses floating-point compu-
tations (this matter may probably be settled by customizingthe opti-
mization parameters of CPLEX). It can lead to two kinds of errors:

• the solution found by CPLEX is slightly different than the real one
on some index of theleximin-optimal solution (which can induce
a huge error on the next components);

• at some step, the call to functionmaximize returns “Inconsistent”
(although it should not).

Figure 2(c) shows the number of errors from the second type (the
number of errors from the first type is approximately the same).

Concerning the different weight distributions, the instances with
uniformly distributed weights are clearly more difficult tosolve than
the other ones. The reason is certainly that when the weightsare
casted into different classes (say e.g. 4), solving such an instance
is almost equivalent to solving 4 independent instances (one for each
class), since having one object of some class is almost more impor-
tant than having all the objects of its just inferior class.

Finally, one important issue is the comparison of the two constraint
programming algorithms. As we can see in figures 2(b) and 2(d), the
second algorithm (based on the multiset ordering constraint) is bet-
ter for the instances with a non-uniform weight distribution; how-
ever there is a clear advantage to the other algorithm when the set
of weights is uniformly distributed. Moreover, figure 2(e) shows that
the second algorithm is far better than the first one when the number
of agents increases. This is interesting because it can bring to light
the areas of the parameter space where we should use one algorithm
or the other one. More tests are required to entirely characterize these
areas.

5 RELATED WORK

The article [1] describes an incomplete tabu search-like method
for solving the multiagent problem of fairly allocating satellite re-
sources. This version of the problem is actually very close to the real
application introduced in section 4. It also takes into account most
of the numerous operational constraints. In their version,the authors
are also interested in finding aleximin-optimal allocation. However,
the leximin order is not directly considered like we did in this paper,
but is instead very closely represented by a collective utility function
based on an Ordered Weighted Average operator [19]. Moreover, the
solving techniques introduced in [1] are specifically dedicated to this
precise problem, and to this kind of operational admissibility con-
straints.

9 Therefore the graphs showing solving times must be interpreted carefully,
since the mean of the 20 solving times is biased if some instances have not
been solved in 10 minutes.

10 We currently use a dynamic variable ordering trying to instantiate first the
objects of higher weight of the current poorer agent. It seems to give better
results than classical heuristics.

6

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300 350 400

C
P

U
 ti

m
e

Number of objects

unif. weights
diff. classes

(a) Impact of the number of objects on the solving time using CPLEX
(4 agents, mean on 20 instances)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 20 40 60 80 100 120 140 160 180 200

C
P

U
 ti

m
e

Number of objects

Unif. weights, cardinality constraints
Unif. weights, multiset ordering constraints

Diff. classes, cardinality constraints
Diff. classes, multiset ordering constraints

(b) Impact of the number of objects on the solving time using the two
algorithms with CHOCO (4 agents, mean on 20 instances)

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300 350 400

N
um

be
r

of
 e

rr
or

s

Number of objects

unif. weights
diff. classes

(c) Impact of the number of objects on the number of errors using
CPLEX (4 agents, mean on 20 instances)

 0

 5

 10

 15

 20

 20 40 60 80 100 120 140 160 180 200

N
um

be
r

of
 s

ol
ve

d
in

st
an

ce
s

Number of objects

Unif. weights, cardinality constraints
Unif. weights, multiset ordering constraints

Diff. classes, cardinality constraints
Diff. classes, multiset ordering constraints

(d) Impact of the number of objects on the number of instancessolved
in less than 10 minutes using the two algorithms with CHOCO(4 agents,
mean on 20 instances)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 20 40 60 80 100 120 140 160 180 200

C
P

U
 ti

m
e

Number of objects

Diff. classes, cardinality constraints
Diff. classes, multiset ordering constraints

(e) Impact of the number of objects on the computation of aleximin-
optimal allocation (10 agents, mean on 20 instances).

Figure 2. Impact of the number of objects on the computation of aleximin-optimal allocation (4 or 10 agents).

7

Computation ofleximin-optimal solutions has some other appli-
cation domains. We can find theleximin order, as indicated in sec-
tion 1 as a refinement of themin operator in the study of fuzzy
constraints [2, 5]. Two algorithms dedicated to the computation of
leximin-optimal solutions has been published in [3]. These algo-
rithms work by enumerating, at each step, all the subsets of fuzzy
constraints (corresponding to our agents), so we think thattheir ef-
ficiency are questionable. However, these algorithms have to be ex-
perimented.

Even if fairness does not seem to be widely studied in combina-
torial optimization, we can advert some work, among others,from
Pesant and Régin [16], dealing with a global constraint dedicated to
criteria balancing. The filtering procedures introduced inthe latter
paper are based on statistic rules. This approach is an appealing al-
ternative to ours for dealing with equity. Applied to our problem, it
should be linked with an optimization criterion that would also pro-
vide a kind of efficiency.

6 CONCLUSIONS AND FUTURE WORK

We studied in this paper the followingfair allocationproblem. A set
of indivisible goods has to be allocated to a set of agents. The pos-
sible allocations are subject to some admissibility constraints. Each
agent has its own utility function over the set of admissiblealloca-
tions, and we have to select a fair admissible allocation. Fairness is-
sues are expressed using the notion ofleximin-optimal allocation
over the agents utilities, which is a Pareto-optimal refinement of the
maximin solution. This concept ofleximin-optimal allocation po-
tentially applies to each multiagent problem, where fairness is a key
point.

The main contributions of this paper is the description of two algo-
rithms dedicated to the computation of aleximin-optimal allocation,
in a constraint programming framework. The first one is original,
and is based on the cardinality meta-constraintAtLeast. The second
one is a classical branch-and-bound based on the adaptationof an
existing algorithm [6] that enforces global arc-consistency for a mul-
tiset ordering constraint. The constraint programming framework is
particularly appealing here, as it allows for describing separately our
particular algorithms on the one hand, and on the other hand the set of
admissibility constraints, and the agents utility functions. This sepa-
ration is all the more relevant since in real applications, most of the
admissibility constraints are not fixed and do evolve with the appli-
cation.

The two proposed algorithms are linked to a real-world applica-
tion: fair sharing of satellite resources. This application has inspired
a simplified multiagent allocation problem, for which we developed
a random instance generator, whose generated instances aresignifi-
cantly close to real instances. Using this generator we havebeen able
to test two distinct implementations of the first algorithm (one with
the constraint programming tool CHOCO[12], and the other using the
integer linear programming tool CPLEX 10.0 [10]), and one for the
second algorithm, using CHOCO. The aim was to compare our two
CP algorithms on a simple problem. The results of the implemen-
tations using CHOCO clearly show that none of the two algorithms
is always better than the other one, and that it depends on theinput
parameters of the instance to be solved. The results also show that
CPLEX is clearly better than CHOCO on this particular problem, but
this is not very surprising because our problem particularyfits for
ILP modelling.

This paper is an algorithmic approach, among other possibleones
that may be more efficient. We have only studied here exact methods.

More difficult instances may request the use of incomplete methods
like those of [17], or [18, 1], mixing linear programming andtabu
search. We hope that our random benchmark generator will allow
people interested in the problem to propose and validate other ap-
proaches.

Among the possible extensions of this work, we can suggest:

• studying and using softer and more general modeling of the fair-
ness requirement, replacing theleximin order by a parameterized
collective utility function realizing some compromises between
egalitarianism and classical utilitarianism;

• applying our algorithms to other practical fields, like computa-
tion of balanced timetables or sharing of airspace and airport re-
sources.

REFERENCES
[1] N. Bianchessi, J.-F. Cordeau, J. Desrosiers, G. Laporte, and V. Ray-

mond, ‘A heuristic for the multi-satellite, multi-orbit and multi-
user management of earth observation satellites’,European Jour-
nal of Operational Research, (available online February 2006).
doi:10.1016/j.ejor.2005.12.026.

[2] D. Dubois, H. Fargier, and H. Prade, ‘Refinements of the maximin ap-
proach to decision-making in fuzzy environment’,Fuzzy Sets and Syst.,
81, 103–122, (1996).

[3] D. Dubois and P. Fortemps, ‘Computing improved optimal solutions to
max-min flexible constraint satisfaction problems’,European Journal
of Operational Research, (1999).

[4] H. Fargier, J. Lang, M. Lemaı̂tre, and G. Verfaillie, ‘Partage équitable
de ressources communes. (1) Un modl̀e général et son application
au partage de ressources satellitaires. (2) éléments de complexité et
d’algorithmique’, Technique et Science Informatiques, 23(9), 1187–
1238, (2004).

[5] H. Fargier, J. Lang, and T. Schiex, ‘Selecting preferredsolutions in
fuzzy constraint satisfaction problems’, inProc. of EUFIT’93, Aachen,
(1993).

[6] A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh,‘Multiset
ordering constraints’, inProc. of IJCAI’03, (February 2003).

[7] M. R. Garey and D. S. Johnson,Computers and Intractability, a guide
to the theory of NP-completeness, Freeman, 1979.

[8] R. S. Garfinkel and G. L. Nemhauser,Integer Programming, Wiley-
Interscience, 1972.

[9] P. Van Hentenryck, H. Simonis, and M. Dincbas, ‘Constraint satisfac-
tion using constraint logic programming’,Artificial Intelligence, 58(1-
3), 113–159, (1992).

[10] ILOG. Cplex 10.0. http://www.ilog.com/products/
cplex/.

[11] R. L. Keeney and H. Raiffa,Decisions with Multiple Objectives: Pref-
erences and Value Tradeoffs, John Wiley and Sons, 1976.

[12] F. Laburthe, ‘CHOCO : Implémentation du noyau d’un systm̀e de con-
traintes’, in Actes des JNPC-00, Marseille, France, (2000).http:
//sourceforge.net/projects/choco.

[13] M. Lemaı̂tre, G. Verfaillie, and N. Bataille, ‘Exploiting a Common
Property Resource under a Fairness Constraint: a Case Study’, in Proc.
of IJCAI-99, pp. 206–211, Stockholm, (1999).

[14] H. Moulin, Axioms of Cooperative Decision Making, Cambridge Uni-
versity Press, 1988.

[15] H. Moulin, Fair division and collective welfare, MIT Press, 2003.
[16] G. Pesant and J-C. Régin, ‘SPREAD: A balancing constraint based on

statistics’, inProc. of CP’05, Sitges, Spain, (2005).
[17] M. Vasquez and Jin-Kao Hao, ‘A logic-constrained knapsack formu-

lation and a tabu algorithm for the daily photograph scheduling of an
earth observation satellite’,Journal of Computational Optimization and
Applications, 20(2), 137–157, (2001).

[18] M. Vasquez and J.K. Hao, ‘A Hybrid Approach for the 0–1 Multidi-
mensional Knapsack Problem’, inProc. of IJCAI-01, volume 1, pp.
328–333, (August 2001).

[19] R. Yager, ‘On ordered weighted averaging aggregation operators in
multicriteria decision making’,IEEE Transactions on Systems, Man,
and Cybernetics, 18, 183–190, (1988).

8

