
Positional Scoring Rules for the Allocation of Indivisible
Goods

Dorothea Baumeister1, Sylvain Bouveret2, Jérôme Lang3, Trung Thanh Nguyen1, Jörg
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Abstract. We define a family of rules for dividing m indivisible goods among
agents, parameterized by a scoring vector and a social welfare aggregation function.
We assume that agents’ preferences over sets of goods are additive, but that the
input is ordinal: each agent simply ranks single goods. Similarly to positional
scoring voting rules in voting, a scoring vector s = (s1, . . . ,sm) consists of m
nonincreasing nonnegative weights, where si is the score of a good assigned to an
agent who ranks it in position i. The global score of an allocation for an agent is the
sum of the scores of the goods assigned to her. The social welfare of an allocation
is the aggregation of the scores of all agents, for some aggregation function ?
such as, typically, + or min. The rule associated with s and ? maps a profile of
individual rankings over goods to (one of) the allocation(s) maximizing social
welfare. After defining this family of rules and discussing some of their properties,
we focus on the computation and approximation of winning allocations.

1 Introduction

Fair division of a divisible good has put forth an important literature about specific
procedures, either centralized [11] or decentralized [5]. Fair division of a set of indivisible
goods has, perhaps surprisingly, been mainly addressed by looking for allocations that
satisfy a series of properties (such as equity or envy-freeness) and less often by defining
specific allocation rules. A notable exception is a series of works that assume that each
agent values each good by a positive number, the utility of an agent is the sum of the
values of the goods assigned to her, and the resulting allocation maximizes social welfare;
in particular, the Santa Claus problem [1] considers egalitarian social welfare, which
maximizes the utility of the least happy agent. A problem with these rules is that they
strongly rely on the assumption that the input is numerical. Now, as widely discussed
in social choice, numerical inputs have the strong disadvantage that they suppose that
interpersonal preferences are comparable. Moreover, from a practical designer point of
view, eliciting numerical preferences is not easy: in contexts where money does not play
any role, agents often feel more at ease expressing rankings than numerical utilities.

These are the main reasons why social choice – at least its subfield focusing on
voting – usually assumes that preferences are expressed ordinally. Surprisingly, while
voting rules defined from ordinal preferences have been addressed in hundreds of research
articles, we can find only a few such works in fair division (with the notable exception of



matching, discussed below). Brams, Edelman, and Fishburn [3] assume that agents rank
single goods and have additively separable preferences; they define a Borda-optimal
allocation to be one maximizing egalitarian social welfare, where the utility of an agent
is the sum of the Borda scores of the objects she receives, and where the Borda score
of object gi for agent j ranges from 1 (for j’s least preferred object) to m (for j’s most
preferred object). Unlike Brams et al. [3], Herreiner and Puppe [9] assume that agents
should express rankings over subsets of goods, which, in the worst case, requires agents
to express an exponentially large input, which should be avoided for obvious reasons.

One setting where it is common to use ordinal inputs is two-sided matching. But
there, only one item is assigned to each agent, making this a rather different problem:
fair division rules defined from ordinal inputs can be seen as a one-to-many extension of
matching mechanisms. Examples of practical situations when one has to assign not a
single, but several (sometimes many) items to each agent are common, and the expression
of quantitative utilities is not always feasible: composition of sport teams, divorce
settlements, exploitation of Earth observation satellites (see [5] for more examples).

We start by generalizing Borda-optimal allocations [3] to arbitrary scoring vectors
and aggregation functions. Beyond Borda, the scoring vectors we consider are k-approval
(the first k objects get score 1 and all others get 0), lexicographicity (an item ranked
in position k counts more than the sum of all objects ranked in positions k+ 1 to n),
and quasi-indifference (for short, QI: all objects have roughly the same score, up to
small differences). As for aggregation functions, we focus on utilitarianism (? = +)
and egalitarianism (? = min, as well as ? = leximin, which in a strict sense is not an
aggregation function). In Section 2, we define these allocation rules and discuss some of
their properties. Section 3 is devoted to the complexity of winner determination for a
few combinations of a scoring vector and an aggregation function. In Section 4, we give
several approximation results, some of which make use of picking sequences. Section 5
discusses some open questions for future research.

2 Positional Scoring Allocation Rules and Basic Properties

Let N = {1, . . . ,n} be a set of agents and G = {g1, . . . ,gm} a set of indivisible goods
(we will use the terms good and object synonymously). An allocation is a partition
π = (π1, . . . ,πn), where πi ⊆ G is the bundle of goods assigned to agent i. In the general
case, to compute an optimal allocation (for some notion of optimality) we would need,
for every agent, her ranking over all subsets of G. As listing all (or a significant part of)
the subsets of G would be infeasible in practice, we now make a crucial assumption:
agents rank only single objects. This assumption is not without loss of generality, and
has important consequences; in particular, it will not be possible for agents to express
preferential dependencies between objects. Under this assumption, a singleton-based
profile P = (>1, . . . ,>n) is a collection of n rankings over G, and a (singleton-based)
allocation rule (respectively, an allocation correspondence) maps any profile to an
allocation (respectively, a nonempty subset of allocations).

We now define a family of allocation rules that more or less corresponds to the family
of positional scoring rules in voting (see, e.g., [4]).



Definition 1. A scoring vector is a vector s = (s1, . . . ,sm) of real numbers such that
s1 ≥ ·· · ≥ sm ≥ 0 and s1 > 0. Given a preference ranking > over G and g ∈ G, let
rank(g,>) denote the rank of g under >. The utility function over 2G induced by
the ranking > on G and the scoring vector s is for each bundle X ⊆ G defined by
u>,s(X) = ∑g∈X srank(g,>). We consider the following specific scoring vectors:

– Borda scoring: borda = (m,m−1, . . . ,1),4

– lexicographic scoring: lex = (2m−1,2m−2, . . . ,1),
– quasi-indifference for some ε , 0 < ε � 1:

ε-qi = (1+(m−1)ε,1+(m−2)ε, . . . ,1).
– k-approval: k-app = (1, . . . ,1,0, . . . ,0), where the first k entries are ones and all

remaining entries are zero.

For example, let G = {a,b,c} be a set of three goods and let two agents have the
following preference profile: (a >1 b >1 c, b >2 c >2 a). Let π = ({a},{b,c}). Then,
for the Borda scoring vector, agent 1’s bundle {a} has value 3 and agent 2’s bundle
{b,c} has value 3+2 = 5.

It is important to note that we do not claim that these numbers actually concide, or
are even close to, the agents’ actual utilities (although, in some specific domains, scoring
vectors could be learned from experimental data). But this is the price to pay for defining
rules from an ordinal input (see the Introduction for the benefits of ordinal inputs). This
tradeoff is very common in voting theory: the well-studied family of positional scoring
rules in voting theory (including the Borda rule) proceeds exactly the same way; voters
rank alternatives, and the ranks are then mapped to scores; the winning alternative is the
one that maximizes the sum of scores. If we aim at maximizing actual social welfare
then we have to elicit the voters’ (numerical) utilities rather than just asking them to rank
objects. Caragiannis and Procaccia [6] analyze this ordinal-cardinal tradeoff in voting
and show that the induced distortion is generally quite low.

The individual utilities are then aggregated using a monotonic, symmetric aggrega-
tion function that is then to be maximized. The three we will use here are among the
most obvious ones: sum (utilitarianism), min and leximin (two versions of egalitarian-
ism). Leximin refers to the (strict) lexicographic preorder over utility vectors whose
components have been preordered nondecreasingly. Formally, for x = (x1, . . . ,xn), let
x′ = (x′1, . . . ,x

′
n) denote some vector that results from x by rearranging the components

of x nondecreasingly, and define x <leximin y if and only if there is some i, 0≤ i < n, such
that x′j = y′j for all j, 1 ≤ j ≤ i, and x′i+1 < y′i+1, and x ≤leximin y means x <leximin y or
x = y. Let leximin denote the maximum on a set of utility vectors according to ≤leximin.
For each scoring vector s, define three allocation correspondences:

– Fs,+(P) = argmaxπ ∑1≤i≤n u>i,s(πi),
– Fs,min(P) = argmaxπ min1≤i≤n{u>i,s(πi)}, and
– Fs,leximin(P) = argleximinπ(u>1,s(π1), . . . ,u>n,s(πn)),

4 Note that the usual definition of the Borda scoring vector in voting is (m−1,m−2, . . . ,1,0).
Here, together with [3] we fix the score of the bottom-rank object to 1, meaning that getting it
is better than nothing. For scoring voting rules, a translation of the scoring vector has obviously
no impact on the winner(s); for allocation rules, however, it does. See Example 1.



where P = (>1, . . . ,>n) is a profile and π = (π1, . . . ,πn) an allocation. Whenever we
write Fs,?, we mean any one of Fs,+, Fs,min, and Fs,leximin. Similarly as in voting theory,
an allocation rule is defined as the composition of an allocation correspondence and a
tie-breaking mechanism (that break ties between allocations).

Example 1. For n = 3 agents and m = 4 goods, G = {a,b,c,d}, let P = (c >1 b >1 a >1
d, c >2 a >2 b >2 d, b >3 d >3 c >3 a) = (cbad, cabd, bdca). (From now on, we
sometimes omit stating “>i” explicitly in the preferences.) Then, F(4,3,2,1),leximin(P) =
{(c,ad,b)} and F(3,2,1,0),leximin(P) = {(c,a,bd)}.

Some properties of scoring voting rules naturally carry over to the scoring allocation
rules. We here omit stating them explicitly and formally, except for monotonicity (Defi-
nition 2). Analogously to monotonicity of social welfare functions, monotonicity of an
allocation rule means that no agent will ever lose a good by ranking it higher.

Definition 2. An allocation rule Fs,? is monotonic if for all π = (π1, . . . ,πn) ∈ Fs,?(P)
with g ∈ πi and for all profiles P′ resulting from P by agent i ranking g higher, leaving
everything else (i.e., the relative ranks of all other objects in i’s ranking and the rankings
of all other agents) unchanged, there exists some π ′ = (π ′1, . . . ,π

′
n)∈ Fs,?(P′) with g ∈ π ′i .

Proposition 1. Fs,? is monotonic for every scoring vector s.

Proof. For notational convenience, we give the proof only for ?=+. Let P = (>1,
. . . ,>n) be a profile over a set G of goods with g ∈ G and let P′ = (>′1,>2, . . . ,>n)
be a modified profile, where w.l.o.g. the first agent modifies her preferences such that
g is ranked higher in >′1 than in >1, leaving everything else unchanged. Let π =
(π1, . . . ,πn) ∈ Fs,+(P) be an allocation assigning good g to agent 1.

Fix an arbitrary π ′ = (π ′1, . . . ,π
′
n)∈ Fs,+(P′). For a contradiction, suppose that g 6∈ π ′1.

For every good g′ 6= g, the rank of g′ in >′1 is either the same as or below the rank of g′

in >1, and since g 6∈ π ′1, we have u>′1,s(π
′
1)≤ u>1,s(π

′
1). By monotonicity of utilitarian

aggregation, this implies

u′(π ′) = u>′1,s(π
′
1)+

n

∑
i=2

u>i,s(π
′
i )≤

n

∑
i=1

u>i,s(π
′
i ) = u(π ′). (1)

Now, because >′1 has been obtained by moving g upwards in >1, we have u>1,s(π1)≤
u>′1,s(π1). By monotonicity of utilitarian aggregation, this implies

u′(π) = u>′1,s(π1)+
n

∑
i=2

u>i,s(πi)≥
n

∑
i=1

u>i,s(πi) = u(π). (2)

Since π ∈ Fs,+(P) and π ′ ∈ Fs,+(P′), we have u(π)≥ u(π ′) and u′(π ′)≥ u′(π), which
together with (1) and (2) implies u′(π)≥ u(π)≥ u(π ′)≥ u′(π ′)≥ u′(π). Thus u′(π) =
u′(π ′), which means that π ∈ Fs,+(P′). But since g ∈ π1, this is a contradiction, so the
assumption is false and there is some π ′ ∈ Fs,+(P′) assigning good g to agent 1. q

Note that this result does not mean that π ∈ Fs,?(P) implies π ∈ Fs,?(P′); e.g., this
stronger property does not hold for the specific case of ?=+ and Borda scoring.



3 Winner Determination

In this section, we study the question: What is the complexity of determining an optimal
allocation for a given scoring vector and a given aggregation function? For a given
scoring vector s and a given aggregation function Fs,?, where ? ∈ {+,min, leximin},
define the following problem concerning winner determination.

Fs,?-OPTIMAL-ALLOCATION (Fs,?-OA)

Given: A profile P of n agents’ rankings on a set G of indivisible goods and
an allocation π of G.

Question: Is π in Fs,?(P)?

It is easy to see that Fs,+-OA is in P and both Fs,min-OA and Fs,leximin-OA are in
coNP for every scoring vector s.

The search problem Fs,?-FIND-OPTIMAL-ALLOCATION (Fs,?-FOA) seeks to actu-
ally find an optimal allocation. Clearly, Fs,+-FOA is solvable in polynomial time for
any scoring vector s: every good is simply given to an agent who ranks it best. Fs,min-
FOA and Fs,leximin-FOA are much less easy in general.5 We have the following easy
polynomial-time upper bounds for restricted variants.

Proposition 2. (1) For each k, Fk-app,min-FOA is solvable in polynomial time. (2) Fs,min-
FOA and Fs,leximin-FOA are solvable in polynomial time for every scoring vector s if
there are a constant number of goods.

(1) is a special case of the problem of maximizing egalitarian social welfare with a
{0,1}-additive function, known to be solvable in polynomial time by applying a network
flow algorithm [8]. In addition, we will study the following decision problem associated
with the value of an optimal allocation.

Fs,+-OPTIMAL-ALLOCATION-VALUE (Fs,+-OAV)

Given: A profile P = (>1, . . . ,>n) of n agents’ rankings on a set G of indivisi-
ble goods and k ∈ N.

Question: Is there an allocation π = (π1, . . . ,πn) such that ∑1≤i≤n u>i,s(πi)≥ k?

Analogously, we define Fs,min-OAV by asking whether or not min1≤i≤n u>i,s(πi)≥ k,
and Fs,leximin-OAV where the bound is an ordered list (k1, . . . ,kn) of nonnegative integers
and we ask whether (u>1,s(π1), . . . ,u>n,s(πn))≥leximin (k1, . . . ,kn).

Clearly, Fs,+-OAV is in P. Since the value of a given allocation for min and leximin
can be computed in polynomial time, Fs,min-OAV and Fs,leximin-OAV are in NP for each
scoring rule s. For lexicographic scoring and quasi-indifference, these bounds are tight.

Theorem 1. Flex,min-OAV and Flex,leximin-OAV both are NP-complete.

5 Clearly, if the scoring vector s is part of the input then the problem Fs,?-FOA is (weakly) NP-
hard, even for two agents having the same preferences, by a direct reduction from PARTITION.



Proof. We only give the proof for Flex,min-OAV (since it can be easily adapted to work
for Flex,leximin-OAV as well), by a reduction from the NP-complete problem EXACT-
COVER-BY-3-SETS (X3C): given a collection C = {C1, . . . ,Cp} of 3-element subsets of
a set X of size 3q (where q < p), is there an exact cover of X , i.e., is there a subcollection
C ′ ⊂ C of size q such that each element of X appears in exactly one member of C ′?

From a given instance (X ,C ) of X3C, with C = {C1, . . . ,Cp} a collection of 3-
element subsets of X as above, we create an instance of the allocation problem as follows.
We create one good gi out of each element xi from X , and a set F = { f1, . . . , fp−q} of
p−q goods (to be called “first”), which makes a total of 2q+ p goods. We create a set
{1, . . . , p} of p agents. Agent i has the following preferences: f1 >i · · ·>i fp−q >i Ci >i
X \Ci, where a set S in this order stands for all the goods of S in any fixed order.6

We claim that (X ,C ) is a positive instance of X3C if and only if its constructed
Flex,min-OAV instance has an allocation with an egalitarian collective utility greater than
or equal to 23q−1 +23q−2 +23q−3 under lexicographic scoring.

(⇒) Suppose that C is a positive instance of X3C and let C ′ be the corresponding
exact cover of X . Let π be an allocation that gives to each agent i the goods corresponding
to Ci if Ci ∈ C ′, and one good from F otherwise. Such an allocation π exists, since
(i) the elements in C ′ do not overlap, and (ii) there are exactly p−q agents i such that
Ci 6∈ C ′ (and hence each such agent can receive a different fk ∈ F). It is easy to see that
each agent receiving one good amongst F has a utility greater than 23q, and each agent
receiving one Ci has a utility equal to 23q−1 +23q−2 +23q−3.

(⇐) Let π be an allocation of egalitarian utility at least 23q−1 +23q−2 +23q−3. Since
‖F‖= p−q, at least q agents (call them “unhappy”) do not receive any good from F .
Suppose an unhappy agent i receives only a proper subset of the goods from Ci. Then
the greatest utility she can get is 23q−1 +23q−2 +23q−3−1, if she gets her two preferred
goods from Ci and all the goods from X \Ci. Hence, for the egalitarian utility to be at
least 23q−1 +23q−2 +23q−3, each unhappy agent must get at least all the goods from Ci.
Since the agents’ shares cannot overlap, there can only be q unhappy agents, and their
shares correspond to an exact cover of X .

Since this reduction can be computed in polynomial time, the proof is complete. q

Theorem 2. For each fixed ε , 0 < ε� 1, Fε-qi,min-OAV and Fε-qi,leximin-OAV both are
NP-complete.

Proof. Once again, we only give the proof for Fε-qi,min-OAV, as its adaptation to
Fε-qi,leximin-OAV is easy. The proof is again by a reduction from the NP-complete
problem X3C. Given an instance (X ,C ) with C = {C1, . . . ,Cp} and ‖X‖= 3q, create
the following Fε-qi,min-OAV instance. The set of objects is G = {g1, . . . ,g3q}∪D, where
D = {d1, . . . ,d4(p−q)} is a set of dummy objects, hence ‖G‖ = 4p− q. There are p
agents, where each agent i, 1≤ i≤ p, has the preference Ci > X \Ci > D, and the bound
is k = 3+(12p−3q−6)ε .

(⇒) Suppose that (X ,C ) is a positive instance of X3C and let C ′ be an exact cover
of X . Let π be an allocation that gives to each agent i the goods corresponding to Ci if

6 Here and later, we slightly abuse notation, as X and Ci will refer both to the initial sets and their
corresponding sets of goods.



Ci ∈ C ′, and otherwise four arbitrary goods from D that are still available. So π is such
that p−q agents receive four goods (and thus have a utility greater than 4), and q agents
receive their three best goods, and hence they all have a utility of 3+(12p−3q−6)ε .

(⇐) Let π be an allocation of egalitarian utility at least 3+(12p− 3q− 6)ε . By
definition of QI, all agents must get at least three goods. Moreover, given the number
of agents and goods, at least q “unhappy” agents must get exactly three goods (where
“unhappy” is defined as in the proof of Theorem 1). Finally, given the bound, these
unhappy agents must all get their three preferred goods, that is, Ci for agent i. Hence, all
the Ci for the q unhappy agents must not overlap: this is an exact cover for (X ,C ). q

An anonymous reviewer of a previous draft of this paper obtained the following
result, and we are very grateful for his or her consent to include the proof.

Theorem 3. Fborda,min-OAV and Fborda,leximin-OAV both are NP-complete.

Proof. The construction to show NP-hardness is highly similar to the ones presented
above (and once again we only give the proof for Fborda,min-OAV whose extension
to Fborda,leximin-OAV is easy). Again, let (X ,C ) be a given X3C instance with C =
{C1, . . . ,Cp} and ‖X‖ = 3q. Pad the X3C instance so that 3q− 4 = 2(p− q) (this is
similar to the padding employed by Faliszewski and Hemaspaandra [7]). There will be p
agents, one for each subset Ci. Create 3q goods, one per element in X . These goods will
be at the bottom of everyone’s ranking; agent i’s preferred goods among these 3q goods
are the three goods corresponding to set Ci. There are another 2(p−q) goods and all the
agents agree on their ranking. Now, either an agent receives set Ci with value 9q−3, or
she receives two higher valued goods with values 6q−3− i and 3q+ i, or 9q−3 in total.

In a bit more details, for showing that we have a yes-instance of X3C if and only if
the constructed instance of Fborda,min-OAV is a yes-instance, the necessary part is easy to
see. For the sufficient part, note that to obtain a utility of at least 9q−3 for each of the p
agents, everyone needs to get at least two goods. Since there are 3q+2(p−q) = q+2p
goods, there are at least p− q agents that receive only two goods. To obtain a utility
of at least 9q− 3 with only two goods, the lower ranked good must be placed in the
first 2(p− q) positions. This implies that the p− q agents receiving only two goods
receive those 2(p−q) goods that are placed at the beginning of every preference. Then
the remaining q agents must all receive the goods at positions 3q, 3q+1, and 3q+2 to
obtain a utility of 9q−3, and this corresponds to an exact cover of X . q

Using a slight adaptation of the proofs of Theorems 1, 2 and 3, we can show that
Flex,min-OA, Fε-qi,min-OA and Fborda,min-OA are coNP-complete. These proofs, however,
do not directly extend to Flex,leximin-OA, Fε-qi,leximin-OA nor Fborda,leximin-OA.

Proposition 3. For s ∈ {borda, lex,ε-qi}, Fs,min-OA is coNP-complete.

Proof Sketch. For s = lex, we can use a reduction from a restricted version of the
complementary of X3C, which we will call R-X3C and define as follows: given a
triple (X ,C ,C ′), where (X ,C ) is an instance of X3C, and C = {C1, . . . ,Cp} and C ′ =
{C′1, . . . ,C′q} are such that (i) for all i, C′i ⊂ Ci, (ii) for all i, ‖C′i‖ = 2 and (iii) for
all i 6= j, C′i ∩C′j = /0, is (X ,C ) a negative instance of X3C? This problem can be
proven to be coNP-complete by using a reduction from X3C. Suppose, w.l.o.g., that



X \
⋃q

i=1 C′i = {x1, . . . ,xq}. We adapt the reduction used in Theorem 1 by constraining
the preferences of the first q agents as follows: for each i ∈ {1, . . . ,q},

(i) among the three objects from Ci, we put those from C′i at the first two positions and
(ii) among the objects from X \Ci, we put gi at the first position.

Now let π be as follows: each i ∈ {1, . . . ,q} gets the two objects from C′i and xi and each
agent i ∈ {q+1, . . . , p} gets fi−q. We can prove that (X ,C ,C ′) is a positive instance of
R-X3C if and only if π ∈ Fs,min(P).

The proofs for s = ε-qi and s = borda also use a reduction from R-X3C, using the
same kind of adaptation of the proof of Theorems 2 and 3 as above for Theorem 1. For
s = ε-qi (resp. s = borda), the allocation π gives the two objects from C′i and xi to each
agent i ∈ {1, . . . ,q} and four random objects di (resp. 2 objects among the 2(p−q) first
ones) to each agent i ∈ {q+1, . . . , p}. q

For a constant number of agents, we provide efficient algorithms for many of our
problems via dynamic programming.

Theorem 4. For each s ∈ {borda, lex,ε-qi} and for each ? ∈ {min, leximin}, Fs,?-OA
and Fs,?-FOA are solvable in polynomial time if the number of agents is constant.

Proof Sketch. For s ∈ {borda,ε-qi}, we sketch an algorithm that works for both
Fs,?-OA and Fs,?-FOA. It encodes each possible allocation that assigns the first j goods
to the n agents as an n-dimensional vector. After initializing V0 = {0}, it runs in m steps.
At step j, it generates the vector set Vj from Vj−1 by putting, for each v ∈Vj−1, n vectors
vi = v+ srank(g j ,>i) · ei, 1≤ i≤ n, into Vj, where ei denotes the i-th unit vector. Clearly,
‖Vj‖ ≤ ‖Vm‖ for all j ≤ m. For s = borda, every entry of each vector in Vm is bounded
above by m(m+1)/2 and thus ‖Vm‖ ∈ O(m2n). For s = ε-qi, every entry of each vector
in Vm has the form p+ q · ε , where p,q ∈ Z, 0 ≤ p ≤ m and 0 ≤ q ≤ m(m−1)/2. Hence,
‖Vm‖ ∈ O(m3n). It is not difficult to see that the running time of the algorithm depends
on ‖Vm‖ and thus is polynomial in m.

We now turn to lexicographic scoring, s = lex. The case with two agents can be
solved efficiently by implementing the following simple rules when the preferences of
the agents are examined from the most to the least preferred good: (1) If the agents
have different goods that are not assigned yet on the current position, both agents get
their current goods and proceed with the next position. (2) If both current objects are
already assigned, proceed with the next position. (3) If both agents rank the same
object, say g, that is not assigned yet on the current position, then let gi 6= g be the
most preferred good of agent i ∈ {1,2} that has not been assigned yet, and w.l.o.g.
assume that rank(g1,>1)≥ rank(g2,>2). Assign g to agent 1 and all remaining objects
to agent 2. (4) The last case is that only one of the current objects, say g (w.l.o.g., the
one ranked by agent 1), has not been assigned yet. If g is not the most preferred good of
agent 2 among those not yet assigned, then assign it to agent 1 and remaining objects
to agent 2. Otherwise, let gi 6= g be the most preferred good of agent i ∈ {1,2} that
has not been assigned yet. Note that rank(g,>1) < rank(g,>2). (i) If rank(g1,>1) <
rank(g,>2), agent 1 receives g1, while agent 2 gets g and the remaining objects. (ii) If
rank(g1,>1) = rank(g,>2), assign g1 to agent 1 and g to agent 2, and proceed with the
next position. (iii) If rank(g,>2)< rank(g1,>1)< rank(g2,>2), assign g to agent 2 and



the remaining objects to agent 1. (iv) If rank(g1,>1)≥ rank(g2,>2), give g to agent 1
and the remaining objects to agent 2. The case with more than two agents can be proven
by induction on n and is omitted due to space constraints. q

OA OAV FOA

Fs,+ in P in P pol. time

Fs,min coNP-comp∗ NP-comp∗ NP-hard∗

k-app or m ∈ O(1) in P in P pol. time
lex or ε-qi coNP-comp NP-comp NP-hard

borda coNP-comp NP-comp
lex or borda or ε-qi, if n ∈ O(1) in P in P pol. time

Fs,leximin coNP-comp∗ NP-comp∗ NP-hard∗

lex or ε-qi in coNP NP-comp NP-hard
borda in coNP NP-comp

lex or borda or ε-qi, if n ∈ O(1) in P in P pol. time
∗if s is part of the input (even for two agents with same preferences)

Table 1. Overview of complexity results (gray: partial results)

4 Approximation

Flex,min-OAV is NP-complete by Theorem 1. This raises the issue of whether there exists
a polynomial-time approximation algorithm for the search variant of this rule; this turns
out to be the case.

Proposition 4. There exists a (1/2)-approximation algorithm for Flex,min-FOA.

Proof Sketch. Let k∗ be the smallest integer such that it is possible to give each
agent one of her best k∗ objects. Finding an allocation that gives each agent one of
her best i objects can be expressed as a bipartite matching problem, therefore k∗ and
a corresponding allocation πk∗ can be computed in polynomial time. We complete the
partial allocation πk∗ into a complete allocation π in an arbitrary way. In π , each agent
gets a utility at least 2m−k∗ , therefore the egalitarian social welfare of π is at least 2m−k∗ .
Now, if there were an allocation with egalitarian social welfare at least 2m−k∗+1, then it
would have been possible to give each agent one of her best k∗−1 objects, which would
contradict the definition of k∗. q

We now turn to a different kind of approximation: picking sequences, whose advan-
tage is that they avoid preference elicitation. We investigate the price to pay for that: in
Section 4.1 (respectively, Section 4.2), we focus on the ratio (respectively, the difference)
between the value of the optimal allocation and the value of the allocation obtained by
applying a picking sequence.

4.1 Multiplicative Price of Elicitation-Freeness

Simple protocols for allocating indivisible resources without eliciting the agents’ prefer-
ences first, as discussed in [5,2,10], consist in asking agents to pick objects one after the



other, following a predefined sequence. An interesting question is whether using such
protocols (without elicitation), or simulating them from the known preferences (after full
elicitation of the agents’ rankings) gives a good approximation of our scoring rules: what
is the loss incurred by the application (simulated or not) of the picking sequence with
respect to an optimal allocation? We give here two results for Borda scoring: one for
egalitarianism, one for utilitarianism. One may wonder why we should look for such a
result in the case of utilitarianism, given that there is a straightforward greedy algorithm
that outputs an optimal allocation. The reason is that picking sequences (when actually
used, as opposed to simulated ones) do better on one criterion: they are very cheap in
communication, as agents only reveal part of their preferences by picking objects, as
opposed to revealing their full preferences in the case of a centralized protocol.

Formally, a (picking) policy is a sequence σ = σ1 · · ·σm ∈ {1, . . . ,n}m, where at each
step, agent σi picks her most preferred object among those remaining (where we assume
agents to use only their sincere picking strategies). For instance, if m = 4 and n = 2, 1221
is the sequence where 1 picks an object first, then 2 picks two objects, and 1 takes the
last object. The precise definition of an allocation induced by a picking sequence and a
profile, assuming that agents act according to their true preferences, is in [2]. Sequential
allocation rules are appealing because they require even less input from the agents than
singleton-based allocation rules; however, this gain in communication comes with a loss
of social welfare. To quantify this loss, we define the following measure.

Definition 3. Given a policy σ (for n agents and m objects), a scoring vector s, and an
aggregation function ? ∈ {+,min}, the multiplicative price of elicitation-freeness of σ ,
denoted by MPEFs,?(σ), is the worst-case ratio in social welfare between an optimal
allocation for Fs,? and the sequential allocation, among all profiles with m goods.

Since we focus on s = borda only, we from now on simply write MPEF?(σ) to mean
MPEFborda,?(σ). We now give results about the quality of the outcome of balanced
picking sequences (12 · · ·n)m

n , assuming that m is a multiple of n. For instance, if
m = 6 and n = 3, σ = 123123 is balanced. Computing the price of elication-freeness
is challenging. We focus on the regular policy σn

R = (1 · · ·n)∗, but we can get similar
results for other fair policies like (1 · · ·nn · · ·1)∗.

Lower Bounds A naive algorithm for computing the additive or multiplicative PEF
for a given value m is simply to generate all possible profiles and for each of them to
compute an optimal allocation from which it is possible to deduce the loss incurred by
the sequential allocation. However, the number of profiles grows exponentially in m, and
computing an optimal allocation might be intractable. Still, it is possible to lower-bound
the PEF for a given m by computing the incurred loss for a subset of all possible profiles.
In Figure 1, we plot the best such lower bounds we could achieve experimentally for the
multiplicative PEF. In the case ?=+, each data point corresponds to two million profiles
randomly generated (with a uniform distribution). In the case ? = min, for each data
point, random profiles were generated until a threshold of 1,800 seconds of computation
time was reached. The conclusions that can be drawn from Figure 1 is that for ?=+,
in the worst and average cases the loss seems to tend to the neighborhood of 1. The



conclusions for ? = min are somewhat similar, but they are less firm, as we have not
been able to go as far in the number of objects as for ?=+.
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We now provide a formal lower bound for MPEF for ?=+, and the regular policy.

Proposition 5. For m = kn objects, MPEF+(σ
n
R)≥ 1+ mn−m−n2+n

m2+mn , and thus we have
MPEF+(σ

n
R)≥ 1+ n−1

m +Θ(1/m2) when m tends to +∞ with n being held constant.

Proof Sketch. We construct a profile P = (>1,>2, . . . ,>n) where for each agent a,
>a is defined so that (a) ∀i, i′ such that i < i′ ≤ m− a, oi > oi′ ; (b) ∀ j, j′ such that
m−a+1≤ j < j′, o j > o j′ ; (c) ∀i≤ m−a, ∀ j ≥ m−a+1, oi < o j. For each i ∈ [1,n],
object om−i+1 is assigned to agent i in the sequential and an optimal allocation. For each
i ∈ [1,m−n], object oi is assigned to agent 1 in an optimal allocation with utility m− i.
However, if i≡ a (mod n), then oi is assigned to agent a in the sequential allocation with
utility m− i− (a−1). Summing over all objects leads to the result. q

Upper Bounds We now also provide formal upper bounds for MPEF for ? = + and
?= min, and the regular policy.

Proposition 6. For m = kn objects, MPEF+(σ
n
R)≤ 2− m−n

mn+n , and thus MPEF+(σ
n
R)≤

2− 1
n +Θ(1/m) when m tends to +∞ with n being held constant.

Proof Sketch. Let gni+ j be the object picked at the (ni+ j)th time step. Because
σ is balanced, it is picked by agent j. Let up(g) be the score associated to object g
by player p: up(g) = u>p,s({g}) = srank(g,>p). The loss of social welfare associated
with σ is the sum of the losses over each object gni+ j, which can be expressed as
max0≤ j′≤n−1 u j′(gni+ j)−u j(gni+ j).

At step ni+ j, when it is agent j’s turn to pick an object, the following facts hold:
(a) no more than ni+ j− 1 objects have already been picked, so agent j will pick an
object among her ni+ j best objects; (b) object gni+ j hasn’t been picked by any other



agent so far; therefore, gni+ j is not among the best i objects of any agent. (a) and (b)
imply (a’) u j(gni+ j) ≥ sni+ j = m− (ni+ j) + 1 and (b’) u j′(gni+ j) ≤ si = m− i+ 1.
¿From (a’) and (b’) we get that the ratio of social welfare associated with object gni+ j is
upper-bounded by m−i+1

m−(ni+ j)+1 . Summing over all objects leads to the result. q

Corollary 1. If n = 2 and m = 2k, 1+ m−2
m(m+2) ≤MPEF+(σ

2
R)≤ 3

2 +
3

2m+2 .

Proposition 7. For m= kn objects, MPEFmin(σ
n
R)≤

2mn−m+n
mn+2n−n2 , and thus MPEF+(σ

n
R)≤

2− 1
n +Θ(1/m) when m tends to +∞ with n being held constant.

Proof. The best allocation one could hope for would give every agent her preferred
k objects, and it has social welfare ∑

k
i=1(m− i+1) = ∑

k
i=1(m+1)−∑

k
i=1 i. The worst

case occurs when all agents have the same preference; in this case, the least well-off
agent is n, who gets the objects he ranked n, 2n, . . . , and kn, and his utility (and therefore
the social welfare) is ∑

k
i=1 sni = ∑

k
i=1(m−ni+1) = ∑

k
i=1(m+1)−n∑

k
i=1 i.

Therefore, skipping the intermediate computation steps, we have MPEFmin(σ) ≤
∑

k
i=1(m+1)−∑

k
i=1 i

∑
k
i=1(m+1)−n∑

k
i=1 i

= 2k(m+1)−k(k+1)
2k(m+1)−nk(k+1) = 2− 1

n +
2n2+2n−2
mn+n2+2n , which concludes the proof. q

Corollary 2. If n = 2 and m = 2k, MPEFmin(σ
2
R)≤ 3

2 +
5

m+4 .

4.2 Additive Price of Elicitation-Freeness

Definition 4. Given a policy σ (for n agents and m objects), a scoring vector s, and
an aggregation function ? ∈ {+,min}, the additive price of elicitation-freeness of σ ,
denoted by APEFs,?(σ), is the worst-case difference in social welfare between the
sequential allocation and an optimal allocation for Fs,? among all profiles with m goods.

Since we focus on s = borda only, we simply write APEF?(σ) to mean APEFborda,?(σ).
We now provide a formal lower bound linear in m for ?=+, with a fixed number of

agents n and the regular policy.

Proposition 8. For m = kn objects, APEF+(σ
n
R)≥

(n−1)(m−n)
2 .

Proof Sketch. We build a profile P = (>1, . . . ,>n) where for each agent a, >a is
defined so that (a) ∀i, i′ such that i < i′ ≤m−a, oi > oi′ ; (b) ∀ j, j′ such that m−a+1≤
j < j′, o j > o j′ ; (c) ∀i≤m−a, ∀ j≥m−a+1, oi > o j. For each i∈ [1,n], object om−i+1
is assigned to agent i in the sequential and an optimal allocation. ∀i ∈ [1,m−n], object oi
is assigned to agent 1 in an optimal allocation with utility m− i. However, if i≡ a (mod n),
then oi is assigned to agent a in the sequential allocation with utility m− i− (a−1). The
loss of social welfare is a−1 for each object oi such that i ∈ [1,m−n] and i≡ a (mod n).
The loss of social welfare in profile P is thus (m

n −1)∑
n
a=1(a−1) = (n−1)(m−n)/2. q

Figure 2 is the equivalent of Figure 1 for additive lower bounds. We can easily see in
this figure that that for ?=+, in the worst case the loss seems to be in the order of m
(which is good), whereas in the average case the loss seems to grow also linearly with m
(similarly for ?= min, with the same remarks as for multiplicative lower bounds).

We now also provide a formal upper bound quadratic in m with a fixed number of
agents n, for ?=+ and ?= min, and the regular policy.
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Proposition 9. For m = kn objects, APEF+(σ
n
R)≤

(m−n)(mn−m+n2+n)
2n .

Proof Sketch. Let gni+ j be the objects picked at the (ni+ j)th time step. Because
σn

R is balanced, it is picked by agent j. Let up(g) be the score associated to object
g by player p: up(g) = u>p,s({g}) = srank(g,>p). The loss of social welfare associated
with σn

R is the sum of the losses over each object gni+ j, which can be expressed as
max0≤ j′≤n−1 u j′(gni+ j)−u j(gni+ j).

At step ni+ j, when it is agent j’s turn to pick an object, the following facts hold: (a)
no more than ni+ j−1 objects have already been picked, so agent j will pick an object
among her ni+ j best objects; (b) object gni+ j hasn’t been picked by any other agent
so far; therefore, gni+ j is not among the best i objects of any agent. (a) and (b) imply
(a’) u j(gni+ j) ≥ sni+ j and (b’) u j′(gni+ j) ≤ si+1. Finally, since s is the Borda scoring
vector, we have sy− sx = x− y. From (a’) and (b’) we get that the loss of social welfare
associated with object gni+ j is upper-bounded by si− sni+ j = (n− 1)i+ j. Summing
over all objects leads to the desired result. q

Corollary 3. For n = 2 and m = 2k, m
2 −1≤ APEF+(σ

2
R)≤ m2

4 +m−3.

Proposition 10. For m = kn objects, APEFmin(σ
n
R)≤

m2n−mn−m2+mn2

2n2 .

Proof. The best allocation one could hope for would give every agent her preferred
k objects, and it has social welfare ∑

k
i=1(m− i+1) = ∑

k
i=1(m+1)−∑

k
i=1 i. The worst

case occurs when all agents have the same preferences; in this case, the worst-off agent
is n, who gets the objects she ranked n, 2n, . . . , and kn, and her utility (and there-
fore the social welfare) is ∑

k
i=1 sni = ∑

k
i=1(m−ni+1) = ∑

k
i=1(m+1)−n∑

k
i=1 i. There-

fore, APEFmin(σ
n
R) ≤

(
∑

k
i=1(m+1)−∑

k
i=1 i

)
−
(
∑

k
i=1(m+1)−n∑

k
i=1 i

)
= n∑

k
i=1 i−

∑
k
i=1 i=(n−1) k(k+1)

2 =(n−1)m(n+m)
2n2 = m2n−nm−m2+mn2

2n2 , which concludes the proof. q

This upper bound is asymptotically better (by a factor of n) than the upper bound for
APEF+(σ

n
R). In particular, for two agents, it is in the order of m2/8 (to be compared with

m2/4 for ?=+ in Corollary 3).



5 Conclusions and Outlook

We have defined a general family of allocation rules for indivisible goods, which can be
seen as the counterpart, for resource allocation, of positional scoring rules from voting
theory. Each rule is parameterized by a scoring vector and an aggregation function.
Focusing on four scoring vectors and three aggregation functions, we have determined
the complexity of computing an optimal allocation for almost all rules considered here
(see Table 1 for the list of results, and the problems whose precise complexity remains
unknown). We have also given some approximation results, some of which make use of
picking sequences whose main purpose it is to avoid preference elicitation.

Even if winner determination is computationally hard for many choices of s and ?
(except for the trivial case of ?=+), these rather negative results should be tempered
by the fact that in most practical settings the number of agents and items is sufficiently
small (e.g n≤ 5, m≤ 20) for the optimal allocation to be computed, even when its deter-
mination is NP-hard. Moreover, the results of Section 4 show that good approximations
of optimal allocations can often be determined with a very low communication cost.

An issue that we did not consider here is manipulability. Clearly, almost all of our
rules are manipulable; characterizing exactly the family of allocation rules that are
manipulable and measuring the extent to which our rules are computationally resistant
to manipulation is clearly an interesting topic for further research.
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