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Abstract. In the problem of fair resource allocation, envy freeness is
one of the most interesting fairness criterion as it ensures that no agent
prefers the bundle of another agent. However, when considering indi-
visible goods, an envy-free allocation may not exist. In this paper, we
investigate a new relaxation of envy freeness consisting in minimizing
the Ordered Weighted Average (OWA) of the envy vector. The idea is
to choose the allocation that is fair in the sense of the distribution of
the envy among agents. The OWA aggregator is a well-known tool to ex-
press fairness in multiagent optimization. In this paper, we focus on fair
OWA operators where the weights of the OWA are decreasing. When an
envy-free allocation exists, minimizing OWA will return this allocation.
However, when no envy-free allocation exists, one may wonder how fair
min OWA allocations are.

After some definitions and description of the model, we show how to
formulate the computation of such a min OWA allocation as a Mixed
Integer Program. Then, we investigate the link between the min OWA
allocation and other well-known fairness measures such as max min share
and envy freeness up to one good or to any good.

Keywords: Computational Social Choice · resource allocation · fair di-
vision · indivisible goods.

1 Introduction

In this paper, we investigate fair division of indivisible goods. In this context,
several approaches have been proposed to model fairness. Amongst these models,
one prominent solution concept is to look for envy-free allocations [9]. These
allocations are such that no agent would like to swap her own bundle with the
bundle of any other agent.

Envy-freeness is a very attractive criterion: the fact that each agent is bet-
ter off with her own share than with any other share is a guarantee of social
stability. Besides, since this criterion is only based on personal comparisons, it
does not require any interpersonal comparability. Unfortunately, envy-freeness
is a very demanding notion, and it is a well-known fact that in many situations,



2 P. Shams et al.

no such allocation exists (consider for instance the simple situation where the
number of items to allocate is strictly less than the number of agents at stake).
Hence several relaxations of the envy-freeness notion have been studied in re-
cent years. Two orthogonal approaches have been considered. A first possibility
is to “forget” some items when comparing the agents’ shares. This leads to the
definition of envy-freeness up to one good [10] and envy-freeness up to any good
[6]. Recently, Amanatidis et al. [1] explored how different relaxations of envy-
freeness relate to each other. Another possible approach is to relax the Boolean
notion of envy and to introduce a quantity of envy that we seek to minimize.
This is the path followed by Lipton et al. [10] or Endriss et al. [7] for instance.
Several approximation algorithms dedicated to minimize these measures were
subsequently designed, see e.g. [11].

In this paper, we elaborate on the idea of minimizing the degree of envy.
More precisely, we explore the idea of finding allocations where envy is “fairly
balanced” amongst agents. For that purpose, we start from the notion of indi-
vidual degree of envy and use a fair Ordered Weighted Average operator3 to
aggregate these individual envies into a collective one, that we try to minimize.
After giving some preliminary definitions in Section 2, we formally introduce our
fairness MinOWA envy criterion (Section 3) and we show of OWA minimization
problem can be formulated as a linear program. We then relate this criterion
to other fairness notions and study properties of the allocations obtained by
minimizing the OWA of the envy vector (Section 4). Finally, we present some
experimental results investigating the fairness of min OWA solutions (Section 5).

2 Model and Definitions

We will consider a classic multiagent resource allocation setting, where a finite
set of objects O = {o1, . . . , om} has to be allocated to a finite set of agents
N = {1, . . . , n}. In this setting, an allocation is a vector −→π = 〈π1, . . . , πn〉 of
bundles of objects, such that ∀i,∀j with i 6= j : πi ∩ πj = ∅ (exclusion: a given
object cannot be allocated to more than one agent) and

⋃
i∈N πi = O (no free-

disposal: all the objects are allocated). πi ⊆ O is called agent i’s share.

Any satisfactory allocation must take into account the agents’ preferences
on the objects. Here, we will make the assumption that these preferences are
numerically additive. Each agent i has a utility function ui : 2O → R+ measuring
her satisfaction ui(π) when she obtains share π, which is defined as follows:

ui(π)
def
=
∑
ok∈π

w(i, ok),

where w(i, ok) is the weight given by agent i to object ok. This assumption, as
restrictive as it may seem, is made by a lot of authors [10, 2, for instance] and is
considered a good compromise between expressivity and conciseness.

3 Here, by “fair”, we mean an OWA where weights are non-increasing.
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Definition 1. An instance of the additive multiagent resource allocation prob-
lem (add-MARA instance for short) I = 〈N ,O, w〉 is a tuple with N and O as
defined above and w : N ×O → R+ is a mapping with w(i, ok) being the weight
given by agent i to object ok. We will denote by P(I) the set of allocations for
I.

2.1 Envy-free allocations

A prominent fairness notion in multiagent resource allocation is envy-freeness.
Envy-freeness (EF) can be defined as follows:

Definition 2. Let I = 〈N ,O, w〉 be an add-MARA instance and −→π be an allo-
cation of I. −→π is envy-free if and only if ∀i, j ∈ N , ui(πi) ≥ ui(πj).

In other words, every agent i weakly prefers her own share to the share of
any other agent j.

In the context of fair division of indivisible goods, this notion is very de-
manding and there exists a lot of add-MARA instances for which no envy-free
allocation exists. To relax envy-freeness, a possibility is to introduce a notion of
degree of envy based on pairwise envy [10].

Definition 3. Let I = 〈N ,O, w〉 be an add-MARA instance and −→π be an allo-
cation of I. The pairwise envy between agents i and j is defined as follows:

pe(i, j,−→π )
def
= max{0, ui(πj)− ui(πi)}.

In other words, the pairwise envy between i and j is 0 if i does not envy j,
and is equal to the difference between the utility for agent i if she had agent j’s
bundle and her actual utility in the allocation −→π . It can be interpreted as how
much agent i envies agent j’s bundle.

From that notion of pairwise envy, we can derive a notion of total envy of an
agent, that we define as the maximal pairwise envy that this agent experiences
for another agent:

Definition 4. Let I = 〈N ,O, w〉 be an add-MARA instance and −→π be an allo-
cation of I. The envy of agent i is:

e(i,−→π )
def
= max

j∈N
pe(i, j,−→π ).

The vector −→e (−→π ) = 〈e(1,−→π ), ..., e(n,−→π )〉 will be called vector of envy of alloca-
tion −→π .

Note that an allocation −→π is envy-free if and only if −→e (−→π ) = 〈0, ..., 0〉.



4 P. Shams et al.

2.2 Relaxations of envy-freeness

Different relaxations of the envy-freness notions have been proposed to measure
the fairness of an allocation when there is no envy-free solution. They correspond
to weaker solution concepts that are easier to satisfy. Envy-freness up to one good
(EF1) [10, 4] is one of the most studied relaxations. An allocation is said to be
envy-free up to one good if, for each envious agent i, the envy of i towards an
agent j can be eliminated by removing an item from the bundle of j.

Definition 5. Let I = 〈N ,O, w〉 be an add-MARA instance −→π be an allocation
of I. −→π is envy-free up to one good if and only if ∀i, j ∈ N , either ui(πi) ≥
ui(πj) or ∃ok ∈ πj such that ui(πi) ≥ ui(πj)\{ok}.

It has been proved that an EF1 allocation always exists and, in the additive
case, an EF1 allocation can be obtained using a round-robin protocol.

Caragiannis et al. [6] proposed another relaxation of envy-freeness that is
closer to the original notion. An allocation is said to be envy-free up to any good
(EFX) if for all envious agents i, the envy of i towards j can be eliminated by
removing any item from the bundle of j.

Definition 6. Let I = 〈N ,O, w〉 be an add-MARA instance and −→π be an al-
location of I. −→π is envy-free up to one good if and only if ∀i, j ∈ N , either
ui(πi) ≥ ui(πj) or ∀ok ∈ πj such that ui(πi) ≥ ui(πj)\{ok}.

Clearly, we have EF =⇒ EFX =⇒ EF1. While an EF1 allocation can be
computed in polynomial time, the guarantee of existence of an EFX allocation
(where the full set of objects is allocated) remains an open issue [5].

2.3 Other fairness notions

Other notions of fairness have been introduced in the literature. Bouveret et
al. [3] showed that some connections can be drawn between some widely used
notions among which the min-max fair share, the proportional fair share and
the max-min fair share.

Definition 7. For a MARA instance I we define the min-max share (mMS) of
agent i as follows:

umMS
i

def
= min−→π ∈P(I)

max
j∈N

ui(πj)

Besides, we say that an allocation −→π is min-max fair share if every agent gets
at least her min-max share; formally: ui(πi) ≥ umMS

i

Definition 8. For a MARA instance I we define the proportional share (PS)
of agent i as follows:

uPSi
def
=

1

n
ui(N )

Besides, we say that an allocation −→π is proportional fair share if every agent
gets at least her proportional share; formally: ui(πi) ≥ uPSi .
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Definition 9. For a MARA instance I we define the max-min share (MMS) of
agent i as follows:

uMMS
i

def
= max−→π ∈P(I)

min
j∈N

ui(πj)

Besides, we say that an allocation −→π is max-min fair share if every agent gets
at least her max-min share; formally: ui(πi) ≥ uMMS

i .

Bouveret et al. [3] showed that these notions form a linear scale of increasing
requirements where: EF =⇒ mMS =⇒ PS =⇒ MMS
This scale can be used to characterize the level of fairness of a given allocation.
In this hierarchy, EF is the most demanding criterion while the max-min fair
share impose few restrictions.

3 MinOWA Envy

Our approach elaborates on minimizing the degree of envy of the agents while
balancing the envy among the agents as suggested by [10]. The general idea
would be to look for allocations that minimize this vector of envy in some sense:
the lower this vector is, the less envious the agents are. This corresponds to a
multiobjective optimization problem where each component of the envy vector
is a different objective to minimize.

3.1 Fair OWA

There are different ways to tackle this minimization problem, each approach con-
veying a different definition of minimization. Our approach, guided by the egali-
tarian notion of fairness [13], is to ensure that the envy is as equally distributed
as possible amongst agents. To this end, we will use a prominent aggregation
operator that can convey fairness requirements: order weighted averages.

Ordered Weighted Averages (OWA) have been introduced by Yager [14] with
the idea to build a family of aggregators that can weight the importance of ob-
jectives (or agents) according to their relative utilities, instead of their identities.
In this way, we can explicitly choose to favour the poorest (or richest) agents,
or to concentrate the importance of the criterion on the middle-class agents.
Formally, the OWA operator is defined as follows:

Definition 10. Let −→α = 〈α1, . . . , αn〉 be a vector of weights. In the context of
minimization, the ordered weighted average parameterized by −→α is the function:

owa
−→α : −→x 7→

n∑
i=1

αi × x↓i ,

where −→x ↓ denotes a permutation of −→x where x↓1 ≥ x
↓
2 ≥ ... ≥ x↓n.
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If we want to convey some notion of fairness, we have to give more weights
to the unhappiest agents. Intuitively, it means that the weights in −→α should
be decreasing. This notion can be formalized by the following property. Let −→x
be a vector such that xj ≥ xi (i is better off than j) and let ε be such that
ε ≤ 2(xj − xi). Then, for any non-increasing vector −→α :

owa
−→α (−→x ) ≤ owa

−→α (〈x1, . . . , xi + ε, . . . , xj − ε, . . . , xn〉)

In other words, such an OWA favours any transfer of wealth from an happier
agent to an unhappier agent. Such a transfer is called a Pigou-Dalton transfer,
and the OWA with non-increasing weight vectors −→α are called fair OWAs.

Since our motivation is to minimize the envy while equally distributing it
between the agents, we propose to minimise the fair OWAs of the envy vector.
Our solution concept can then be defined as follows:

Definition 11. Let I = 〈N ,O, w〉 be an add-MARA instance and −→α be a non-

increasing vector. An allocation
−→
π̂ is an −→α -minOWA Envy allocation if:

−→
π̂ ∈ argmin−→π ∈P(I)(owa

−→α (−→e (−→π ))).

It is important to note that a major advantage of this solution is that it
always exists as it is the result of an optimization process. Moreover, as we will
see, this optimization problem can be modeled as an Integer Linear Program,
which will enable efficient computation of optimal allocations.

3.2 Linearization of OWA minimization

By using a linearization introduced by Ogryczak in [12] we can model our prob-
lem (minimization of the OWA of the envy vector) as a linear program. This
linearization smartly uses the definition of OWA with its Lorenz components.
Let e(k) denote the kth bigger envy of an agent and L(k) the kth Lorenz com-
ponent of the Lorenz vector L. Moreover we consider decreasing OWA weights
(because we consider here a fair OWA) so α1 ≥ α2.... ≥ αn and we denote
−→
α′ = (α1 − α2, α2 − α3, ..., αn). Finally, we recall the definition of the Lorenz
vector L= (e(1), e(1) + e(2), ...,

∑n
i=1 e(i)).

The OWA of a vector can be written with its Lorenz components :

min OWA(−→e (−→π )) = min

n∑
k=1

αke(k) = min

n∑
k=1

α′kLk(−→e )

Besides, there is a known LP to compute Lk(−→e ):

Lk(−→e ) = max

n∑
i=1

aki ei
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s.c.


m∑
i=1

aki = k ∗rk

aki ∈ [0, 1] ∀i ∈ [[1, n]] ∗bki
However, we cannot inject this LP in the previous one as their optimization
directions are not similar. This is why we use the dual (with the dual variables
shown in red in the previous LP) of the LP:

Lk(−→e ) = min krk −
n∑
i=1

bki

s.c.

{
rk + bki ≥ ei ∀i ∈ [[1, n]]

bki ≥ 0 ∀i ∈ [[1, n]]

The linearization of OWA is over but we still have to write three types of con-
straints directly related to our problem. First, we want to express the fact that
any item j can be held by at most one agent

∑n
i=1 z

j
i = 1. We also should

write the constraint expressing completeness (every item has to be allocated)∑n
i=1

∑m
j=1 z

j
i = m but we note that adding this constraint is redundant as it is

the sum over the items of the previous constraint. Finally, we have to make the
link between the envy of agent ai denoted by ei and the utilities of the agents. ei
is the maximum of the envies between the agents, hence we linearize that max-
imum easily as we are in a minimization problem. For ei we write n constraints
expressing that ei is greater than or equal to how much ai envies another agent.
We can finally write the final Mixed Integer Linear Program:

min OWA(−→e (−→π )) = min

n∑
k=1

α′k(krk +

n∑
i=1

bki )

s.c.



rk + bki ≥ ei ∀i, k ∈ [[1, n]]

ei ≥
m∑
j=1

w(i, oj)(z
j
h − z

j
i ) ∀i, h ∈ [[1, n]]

n∑
i=1

zji = 1 ∀j ∈ [[1,m]]

zji ∈ [0, 1] ∀i ∈ [[1, n]] ∀j ∈ [[1,m]]
bki ≥ 0 ∀i, k ∈ [[1, n]]
ei ≥ 0 ∀i ∈ [[1, n]]

4 Link with other fairness measures

We focus here on the possible links between the min OWA allocation and other
fairness measures such as max-min fair share, envy-freeness up to one good and
envy-freeness up to any good. We recall that if an envy-free allocation exists, it
will be returned by the min OWA optimization.
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4.1 Commensurability issues

We first show that if the utilities of the agents are not commensurable, we can
find an example for which the min OWA allocation violates EF1 and MMS. Let’s
consider the following MARA instance involving 3 agents and 4 objects:

o1 o2 o3 o4
a1 6 3 2 1

a2 0.07 0.06 0.04 0.03

a3 20 0 0 0

o1 o2 o3 o4
a1 6 3 2 1
a2 0.07 0.06 0.04 0.03

a3 20 0 0 0

o1 o2 o3 o4
a1 6 3 2 1

a2 0.07 0.06 0.04 0.03

a3 20 0 0 0

The allocation on the left is obviously EF1. However, the allocation on the
middle is the one returned by the OWA minimization and it is not EF1. Indeed,
a2 gets no item in this allocation and a1 gets three items that a2 values strictly
positively. Hence, removing one item from a1’s bundle is not enough for a2 not
to envy a1 anymore. Besides, we can notice that uMMS

1 = 3, uMMS
2 = 0.06 and

uMMS
3 = 0 so the allocation on the right is MMS. So, we have found that the

min OWA allocation violates EF1 and MMS.
Finally, by going up in the hierarchy introduced by Bouveret et al., we would
like to check whether the absence of commensurability prevents the min OWA
allocation from being PS or mMS. This time, we cannot conclude with the same
instance as the previous example has no PS allocation.

We thus consider the following instance:

o1 o2 o3 o4
a1 10 6 6 1

a1 0.1 0.06 0.06 0.01

a1 1 6 6 10

o1 o2 o3 o4
a1 10 6 6 1

a1 0.1 0.06 0.06 0.01

a1 1 6 6 10

The allocation on the left is mMS as umMS
1 = umMS

3 = 100 ∗ umMS
2 = 10.

It is then also PS. However, the allocation on the right is the one returned by
the minimization of the envy vector and it is obviously not PS nor mMS. This
is why from now on we will only consider MARA instances with commensurable
agents:

∑m
j=1 w(i, oj) = K ∀i ∈ [[1, n]]

4.2 Two-agent settings

In the special case where the allocation problem involves only two agents, we
highlight strong connections between the min OWA allocation and other fairness
measures.

Proposition 1. When the MARA instance involves only 2 agents then, the min
OWA allocation is a max-min fair share allocation (thus also EFX).
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Proof. For MARA instances where an envy-free allocation exists, our proof is
straightforward as min OWA returns the EF allocation. It is thus also MMS,
EF1 and EFX.

We now focus on MARA instances for which there is no EF allocation. In
the presence of only 2 agents any min OWA allocation −→π is such that only one
of the two agents is envious. Indeed, if no agent is envious then it means the
MARA instance has an envy-free allocation (which is a contradiction). Similarly,
if both agent are envious it means there is an envy-free allocation (which is again
a contradiction) as the agents would just have to exchange their bundles to
obtain that allocation. Consequently, the sorted envy vector will be of this form
(e, 0). So, let us consider that such an allocation is not MMS. The agent that is
envy-free obviously has her max-min share. So, under the assumption that the
allocation is not MMS, the envious agent does not have her max-min share. But,
in this case, the envious agent could obtain a better share and hence would have
a lower envy. This leads to a contradiction because we consider the min OWA
allocation. Indeed, in this case just, the min OWA allocation minimizes the envy
of the envious agent as the other was not envious. It is known [6] in the pairwise
setting that MMS implies EFX.

4.3 EF1 for the general case: n ≥ 3

We now turn to more general settings involving at least 3 agents. Since an EF1
allocation is guaranteed to exist, we more specifically focus on the possible links
between min OWA and EF1. Unfortunately, we mainly obtain negative results.

Proposition 2. In the general case, the min OWA allocation is not necessarily
EF1.

Proof. We prove this proposition through two examples with different OWA
weights:

Example 1. We consider a MARA instance involving 3 agents and 7 objects,
with the OWA weights α = ( 1

3 ,
1
3 ,

1
3 ). Minimizing OWA of the envy vector using

this set of weight consists in minimizing the sum of the envies of the agents.

o1 o2 o3 o4 o5 o6 o7
a1 5 1 1 1 1 1 1

a2 5 1 1 1 1 1 1

a3 5 1 1 1 1 1 1

o1 o2 o3 o4 o5 o6 o7
a1 5 1 1 1 1 1 1

a2 5 1 1 1 1 1 1

a3 5 1 1 1 1 1 1

The allocation on the left is the one returned by the minimization of the OWA of
the envy vector. a1 is envy free whereas a2 and a3 both envy a1 by respectively
3 and 1. Hence, the sorted envy vector is (3, 1, 0) and the value of OWA is 4

3 .
Moreover, this allocation is not EF1 as a2 would still envy a3 by 1 even if one
item is removed from the latter.
The allocation on the right has the same OWA value ( 4

3 ) but it is EF1. In fact,
in this allocation, a2 does not envy a3. We could then argue that one of the min
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OWA allocations was EF1. This is why we show a stronger example for which
the unique min OWA allocation is not EF1.

Example 2. We consider a MARA instance involving 3 agents and 4 objects,
with the OWA weights α = (1, 0, 0). Minimizing OWA of the envy vector using
this set of weight consists in minimizing the maximum envy of the agents.

o1 o2 o3 o4
a1 14 3 2 1

a2 7 6 4 3

a3 20 0 0 0

o1 o2 o3 o4
a1 14 3 2 1

a2 7 6 4 3

a3 20 0 0 0

The allocation on the left corresponds to the min OWA one (this is the only one
min OWA allocation). The OWA value of the envy vector is 9 (the envy of a1
towards a3). However, the allocation is not EF1. In fact, regardless of the item
we remove from a1, a2 will still envy her.
The allocation on the right is EF1 but its OWA value is 11 (it still stands for the
envy of a1 towards a3) which is quite far from the min OWA solution. Moreover,
contrary to the previous example, a small change in the OWA weight vector
does not change the situation. For instance, even for α = (0.9, 0.1, 0) the order-
ing stays the same.

From the following examples, we can conclude that the minimization of the OWA
of the envy vector does not necessarily return an EF1 allocation in the general
case.

However, we can wonder if we could always find a set of weights that returns an
EF1 by minimizing the OWA. We leave this question open for the moment.

4.4 Continuity of EF1

We showed that the weights of the OWA influences the EF1 property of the
min OWA solution. We can thus wonder whether there exists, among all the
allocations, a kind of continuity of the EF1 solutions. It would be the case if by
sorting all the allocations by their OWA value, all the EF1 allocations would
be contained in a single interval of OWA value. We show that it is not the case
through the following example.

Example 3. We consider a MARA instance involving 3 agents and 3 objects,
with the OWA weights α = (0.44, 0.36, 0.2):

Π1 o1 o2 o3
a1 2 1 3

a2 2 3 1

a3 1 0 5

Π2 o1 o2 o3
a1 2 1 3

a2 2 3 1

a3 1 0 5

Π3 o1 o2 o3
a1 2 1 3

a2 2 3 1

a3 1 0 5

Π4 o1 o2 o3
a1 2 1 3

a2 2 3 1
a3 1 0 5

Π5 o1 o2 o3
a1 2 1 3
a2 2 3 1

a3 1 0 5
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For the purpose of the proof, we extract 5 allocations among all possible
allocations. Allocations Π1 to Π5 are sorted by increasing values of the OWA
of their envy vector. Π1 is the best solution and Π5 is the worst among the five
selected allocations. The following table summarizes the OWA values of these
allocations and specifies whether the allocations are EF1 or not:

Π1 Π2 Π3 Π4 Π5

OWA 0.44 1.32 1.76 2.20 2.20
EF1 True False True True False

We can easily see that there is no continuity of EF1 regarding the OWA
values as Π2 (which is between Π1 and Π3) is not EF1 whereas Π1 and Π3 are
both EF1. Interestingly, it can be noticed that Π4 and Π5 have the same OWA
values even if the allocations totally differ (not a single object has been given to
the same agent). Moreover, Π4 is EF1 whereas Π5 is not.

5 Experimental results

We drew some experiments to compare the performances of the allocations ob-
tained by min OWA envy with other allocation methods. The first method is
a succession of sincere choices where the picking sequence is a concatenation of
round robins. From all the possible allocations (for every possible round robin)
generated by this method we keep the minRR (maxRR) that (respectly) is the
allocation with the minimum OWA envy (maximum) while meanRR is the aver-
age of all these allocations. The max OWA util is the allocation that maximizes
the OWA of the valuations of the agents. For the OWA allocation method, we
used the following fair weight ( 1

2 , ....,
1
2n ).

We generated 100 random add-MARA instances for each method and for each
couple (|N |,|O|) from (3, 4) to (10, 12). We considered such couples of values in
order to produce settings where few EF allocations exist as recommended in [8].

We evaluated the performances of the different methods by measuring the
percentage allocations that are EF, EFX, EF1 and Pareto optimal. The results
are aggregated in Figure 1. It can first be observed that our method obtains the
highest rate of EF and EFX allocations: it is not that surprising for EF as our
method is a relaxation of EF but the result about EFX is very promising. Every
method has returned an EF1. Regarding the number of Pareto optimal alloca-
tions, our methods places second as maximizing OWA of the utilities necessarily
produces a PO allocation.

Figure 2 shows how far the other methods are in terms of OWA envy values.
We notice that even the closest method (max OWA util) is relatively far from
our method, none of them has similar performances. Figure 3 shows that our
method has also good performances in terms of utilitarian criteria.
We performed same experiments for the OWA weights (1, 0, 0, 0) and obtained
similar results. For these wrights the max OWA util does not always return a PO
allocation and our method returns a lower rate of EFX (but still more than the
other methods). This reinforces the idea that considering the envy of all agents
and not only the maximum leads to fairer allocations.



12 P. Shams et al.

Fig. 1. Percentage of EF,EFX,EF1,PO for each method averaged on all (|N |,|O|)

Fig. 2. Value of the OWA of the vector
of envy for each allocation protocol

Fig. 3. Value of the sum of the vector
of utilities for each allocation protocol

6 Conclusion

In this paper, we introduced a new fairness concept following the idea of min-
imizing envy. More particularly, we used an OWA to express fairness in the
distribution of envy between agents. After implementing a MIP to compute min
OWA allocations, we showed the connections between the min OWA allocation
and other famous fairness measures. We ran some experiments to test the per-
formances of our method and compared it with other allocation protocols.
We also left the question of the performance of our method by considering the
weights of the OWA as variables and not as a fix entry of the problem. We could
focus on this matter for future works and try for example to learn them.
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Québec, Canada (Jul 2014)

9. Foley, D.K.: Resource allocation and the public sector. Yale Economic Essays 7(1),
45–98 (1967)

10. Lipton, R., Markakis, E., Mossel, E., Saberi, A.: On approximately fair alloca-
tions of divisible goods. In: Proceedings of the 5th ACM Conference on Electronic
Commerce (EC-04). pp. 125–131. ACM, New York, NY (May 2004)

11. Nguyen, T.T., Rothe, J.: How to decrease the degree of envy in allocations of
indivisible goods. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) Algorithmic Decision
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