
Towards a categorical framework
to ensure correct software evolutions

Sylvain Bouveret∗, Julien Brunel∗, David Chemouil∗ and Fabien Dagnat†
∗ONERA-DTIM

2, avenue Édouard Belin, BP74025,
31055 Toulouse Cedex 4, FRANCE
Email: firstname.lastname@onera.fr

†Institut TELECOM / TELECOM Bretagne
Université Européenne de Bretagne
Technopôle Brest-Iroise - CS 83818

29238 Brest Cedex 3
Email: fabien.dagnat@telecom-bretagne.eu

Abstract—Distributed software, such as satellite software are
now developed and managed by several actors. In this context
supporting the maintenance and therefore the evolution of such
applications is complex and need a formal framework. In this
article, we propose a first step towards such a formal framework
to ensure the correctness of software evolutions. Using category
theory, we can model software and represent patches. This
modeling allows to identify the proof obligations that the provider
of a patch has to discharge in order to ensure that its patch
preserves the correctness of the software.

I. INTRODUCTION

A satellite is a spacecraft aimed at executing a mission such
as scientific observations. To perform its mission, a satellite
is controlled by its flight software while the payload software
is in charge of the mission specific operations (e.g. taking
photos). The flight software, having to guarantee that the
satellite assumes its mission, is a highly critical software.
Once the satellite has been launched, its flight software must
be updated to fix bugs, to adapt to mission evolutions or
to hardware degradation (mainly due to cosmic particles).
This maintenance process is a critical craft using patches and
requiring a high level of expertise. Indeed, while the process
and the quality assurance for producing the initial software is
highly codified, the patching process itself is rarely formalised.

The current practice consists mainly on producing by-hand
the new source code. Furthermore, as the link between the
ground stations and the satellite has a low bandwidth assigned
to patches, they must be the smallest possible. This implies,
for example, that we must avoid to move data and code in the
memory. While this practice is acceptable for simple (local)
patches, producing a more complex patch and ensuring its
correctness is hard. Worse, this patch process does not scale to
the management of a constellation of satellites because a patch
is specific to a satellite1. In a previous paper [1], we proposed
to replace it by an MDE approach where patches would be
obtained by model transformation and code generation. In this

1For example, the memory mapping is unique because the damages memory
banks suffer are different on each satellite.

paper, we would like to focus on the need for formal math-
ematical foundations of patches. This paper synthesises ideas
developed by the authors during projects and collaborations
with the major European satellite manufacturers such as for
example the SPaCIFY project2.

II. SATELLITE AS DISTRIBUTED SYSTEMS

Patching a satellite is a difficult task requiring expertise.
While better production processes may lower the cost of
producing a patch, the current practice of hand-written patches
works well. But two major evolutions foreseen for future
satellites call into question the confidence in this process:

1) future satellite software architecture will be distributed.
Both because the platform will include several processors
and because of the massive use of virtualisation.

2) future mission will be more complex and will require the
cooperation of a group a satellites called a constellation.
It may be a static constellation meaning that the satel-
lites have been developed specifically to cooperate. But
studies are now conducted on how to dynamically build a
constellation by asking a group of already launched and
separately developed satellite to cooperate.

These evolutions will require that the flight software becomes
a distributed software. Furthermore, to control a constellation
a flight software will be distributed over several spacecraft and
may also include software components executing on ground
stations. To simplify the presentation we assume that a flight
software S is a (distributed) configuration of architectural
elements {Ei}. Architectural elements may either be compo-
nent or connector instances. By component we simply mean a
unit of computation that communicates with other components
through connectors. A link between two elements is called a
wire (there may be many wires between two elements).

The major difficulty when managing patches of such sys-
tems is the guarantee of the required high level of safety.
Indeed, in the spatial context, each satellite or software may

2http://spacify.gforge.enseeiht.fr

be specified, developed or maintained by a different producer.
For a given satellite, one of the contractors may be granted
the responsibility to manage and validate the patches. But, in
a more open context, where a constellation may depend on the
cooperation of satellites owned by various competing entity,
it is more difficult to have a unique manager. Our aim is to
provide a mathematical framework that will help collecting all
the proof obligations required for the application of a patch.

Going back to our model, each architectural element Ei may
be specified, developed or maintained by a different entity.
Patching the system S = {Ei} cannot follow the usual version
management approach where all the application is managed by
a single entity. To be able to manage patches in our fragmented
context, one needs a way to compose a global patch P over
S out of local patches {pi}. Intuitively, our idea here is to use
the system architecture as a guide for this composition. Each
patch pi relates to an architectural element Ei. This differs
from the usual practice of Revision Control System (such as
subversion or Darcs) where a patch is composed of changes
made to files. Work has been made to propose an algebra of
file patches [2], [3]. But they focus on the composition and
commutation of changes. While this contribution is valuable,
it does not address the problems raised by distributed systems
patching.

Design and implementation of such patches can then fol-
low the usual process. Managing (designing, implementing,
validating, applying, canceling) patches to S is reduced to the
management of the local patches {pi} and their dependencies.
When following this approach, the difficulty is to control the
effect of a local patch on the whole architecture to be able to
prove the safety.

We believe that category theory is well-suited both for
representing local patches and their effects on the whole
architecture, at least for four reasons, also advocated in [4].
The first one is that category theory is the perfect tool for
representing and reasoning about architectures, viewed as
objects and relations between them. The second reason is that
category theory is abstract enough to stay independent of any
specification language, while providing the useful composition
primitives to the specification language. The third reason is
that, as we shall see later, the correctness of any construction
is guaranteed “automatically” by the framework itself, as soon
as some basic properties are verified. Finally, representing
patches as functors, like we do in our framework, ensures that
the composition of two correct patches yields a correct patch.

The contribution of this paper is a framework that for-
malises the semantics of a (locally) patched architecture.
More precisely, we propose a categorical framework where
software elements are composed of a contract and a body. An
architecture is correct if, for each element, the body satisfies
the contract. In this framework, we give a sufficient condition
that a patch must ensure to maintain the correctness property of
an architecture. We would like to emphasize the importance of
morphisms. The morphism between a body and the associated
contract explains why the body satisfies the contract. The
proof obligations needed to ensure the correctness of any patch

E1 W1 E2 W2 E3

E2E1 E3

W1 W2

BE2

CE2

BW1

CW1

BE1

CE1

BW2

CW2

BE3

CE3

ψB

ψC

ψ′
B

ψ′
C

χB

χC

χ′
B

χ′
C

Fig. 1. A framework for architecture description: from architecture descrip-
tion (upper level) to categories (lower level).

causing an evolution of a body result from these morphisms.
So the essence of the proposal is not the pair contract / body
but the morphisms and therefore the categorical structure.

III. A BASIC CATEGORICAL FRAMEWORK

A. Architecture Description

We aim at defining a framework that does not make too
many hypotheses over the evolving system. Thus, we only
consider that a system is described as a configuration of ele-
ments (component and connector instances). Taking inspiration
from [4], we require elements to be described in two parts. The
first one is the body while the second one consists of a contract
asserted over the former (possibly in the sense of [5]). This
dichotomy enables to track the impact of a body change over
a contract and to detect that a body has not been updated with
respect to its associated contract. As we strive for a notion of
correct evolution, we consider that in the initial configuration,
the contract asserted over a body of any element is verified.

Fig. 1 sums up the setting to be introduced. In the upper
level, a connector E2 links two components E1 and E3

through the wires W1 and W2. In the middle level elements
and wires are mapped to a same kind of objects linked by
arrows (the morphisms of a suitable category Elem described
later). Finally, the lower level gives a detailed view of objects
and morphisms: objects comprise a body and a contract, and
arrows between objects are actually pairs of morphisms.

B. Formalisation

1) Basic Notions: Our treatment of evolution is indepen-
dent from any “common” logic (propositional, first-order,
Floyd-Hoare...). In fact, the formalism is not even required
to be a logic. However, we will illustrate the framework on
linear temporal logic (LTL) [6] to simplify the presentation.

A formalism comes with a syntax, i.e. a set of well-formed
sentences. These could be for instance formulae representing
axioms and theorems. Sentences are built inductively out of
a signature that declares the (possibly typed) vocabulary used
in the formalisation. For instance, a set of sentences in LTL is
built using the usual Boolean (∧, ∨, →, ↔) and temporal (G
for “always”, X for “next”) connectives and a signature (base
vocabulary) of proposition names. Now, a signature morphism

is a map that renames and/or merges sort and operation
symbols (while preserving the correct “typing”, if any). Then
a signature morphism ϕ can be extended inductively to a
morphism of sentences ϕ̂. It translates a sentence built over a
signature Σ into one over a signature Σ′, by renaming and/or
merging symbols while preserving the sorting of symbols.

As usual in formal systems, we postulate that the semantics
of a sentence is described using models. We write M |= E
when a model M satisfies the sentences in E3. In a concrete
setting, a model is for instance a program implementing the
constraints imposed by E. A sentence s is the consequence of
a set of sentences E, written E |= s, if every model of E is
also a model of s (M |= E ⇒M |= s). In LTL, a model is a
transition system. One may then state that G(a∧b) |= G(a∨b),
because in every LTL model where a∧ b is true, a∨ b is true.

2) The Categorical Framework of Presentation: We can
now introduce the formalisation of bodies and contracts.

Definition 1 (Presentation). A (theory) presentation P =
(Σ, E) consists of a signature Σ and a set E of sentences
over Σ; and the associated presented theory is the pair (Σ, E′)
where E′ is the closure of E w.r.t. semantic consequence.

As usual, the closure is defined as the least fixed point of
the function f|= : F 7→ {s | F |= s}, which exists, from the
fixpoint theorem. In our framework, both the body and the
contract of elements are described as finite presentations.

Definition 2 (Presentation Morphism). A presentation mor-
phism ϕ : (Σ, E)→ (Σ′, E′) is a signature morphism ϕ from
Σ to Σ′ s.t. for its extension ϕ̂, we have ϕ̂(E) ⊆ E′.

Informally, a presentation morphism preserves the truth
from one presentation to another, while allowing to merge
and rename symbols. Here, all the properties in the contract
of an element are consequences of its body. So there is a
presentation morphism from the contract to the body. Intu-
itively, a presentation morphism explains how its source may
be embedded as a “part” of the target. Let us stress that
each presentation has its own local vocabulary. Renaming and
merging might not seem interesting but they ensure a form of
decoupling between the contract and the body. For instance,
a contract can provide several different properties that, under
the hood, reduce to a single service.

Presentations and their morphisms form a category, called
Pres where every finite diagram admits a colimit [7]. Intu-
itively, it is always possible to “coalesce” (using a standard
algorithm) a finite set of presentations related by morphisms
into one large presentation modulo renaming and/or merging
while preserving “truth” and the “well-typing” of sentences.

3) A Framework for Architectural Elements: We can now
define our framework for architectural elements.

Definition 3 (Element). An (architectural) element E =
(C,ϕ,B) is given by two presentations C (the contract) and
B (the body) and a presentation morphism ϕ : C → B.

3Note that, usually, the semantics of sentences is built from the semantics
of signatures but we do not enter into details here.

Definition 4 (Element Morphism). A morphism ψ from an
element E = (C,ϕ,B) to an element E′ = (C ′, ϕ′, B′) is
a pair (ψC , ψB) of presentation morphisms ψC : C → C ′

and ψB : B → B′ s.t. ϕ;ψB = ψC ;ϕ′, i.e. s.t. the following
diagram commutes:

C

B

C ′

B′

ϕ ϕ′

ψC

ψB

This condition means the way contract axioms map to body
theorems is “preserved” by the element morphism.

Proposition 1. Architectural elements and their morphisms
form a category, called Elem, that admits all finite colimits.

This result follows from the fact that Elem is a so-called
comma category, namely (IdPres ↓ IdPres).

Definition 5 (Architecture). An architecture A is a finite
subcategory of Elem closed under colimits.

An architecture model can now be interpreted as follows: (1)
every component or connector is interpreted as an object in the
category Elem; (2) every wire gives rise to an object in Elem
and a pair of morphisms identifying names on both ends of the
wire. Apart from this, a wire does not convey any meaning,
so its contract and body are empty. Then the semantics of the
architecture model is given by the colimit of its interpretation,
which exists by Prop. 1. Fig. 2 shows the colimit C of elements
E1, E2, and E3 connected through the wires W1 and W2. The
dotted arrow is the unique morphism from C to C ′ and roughly
means that C is unique up to isomorphism and the smallest
object out of all “candidates” (such as C ′).

E1 E2 E3

W1 W2

C
C ′!

Fig. 2. Five elements and their colimit C in category Elem.

Let us stress that conforming to our categorical framework
imposes to discharge some proof obligations stating that:

1) the signature map between a contract and a body is a
morphism, i.e. contract axioms maps to body theorems;

2) the signature maps between a wire and its ends E and E′

are morphisms, i.e. each symbol in the wire is mapped
to one symbol in E and one in E′.

IV. PATCHES

A. Semantics of Patches

This section defines a patch as an arbitrary system mod-
ification. Among all patches, we focus on those preserving
certain architectural properties and call them transformations.

Our preliminary framework is currently limited, but we believe
it lays the foundations for a comprehensive semantics for
transformations. In particular, some proof obligations must be
checked to ensure that a patch is a transformation. They come
in addition to the proof obligations over the architecture itself.

The only patches considered in this paper are as follows:

P1) renaming a proposition inside a contract/body (with a
potential impact on the associated wires)

P2) removal/addition of axioms inside a contract/body
P3) modification of a wire leaving the connected elements

unchanged
P4) combination of several elements of the same nature into

one (taking the wiring into account)
P5) any composition of the former elementary patches

In all these cases, the existence of links between elements
must be preserved. In our framework, this is done by requiring
transformations to be functors. A functor F from an architec-
ture A1 to an architecture A2 is a pair of maps (Fe, Fm) s.t.

• Fe maps each element of |A1| to an element of |A2|;
• Fm maps morphisms of A1 to A2 (∀ψ : E → E′ in
A1, there is Fm(ψ) :Fe(E)→ Fe(E

′) in A2) preserving
identity morphisms and the composition of morphisms.

Definition 6 (Transformation). A transformation is a functor
of architectures that preserves colimits.

For each of the aforementioned classes of patches, we list
below the conditions under which they are transformations.
That is, we describe4 the proof obligations to be discharged.

P1) This is always a transformation provided that the mor-
phisms that involve the modified atomic proposition are
updated. We possibly have to update both presentation
morphisms (inside the considered element) and element
morphisms (relating the element to other elements).

P2) First note that all morphisms that come from a wire are
not impacted by such patches.
The removal of a contract axiom is always a transforma-
tion, since the presentation morphism from the contract
to the body is obviously preserved. However, the addition
of a contract axiom is not necessarily a transformation. In
order to preserve the morphism between the contract and
the body, we must prove that the translation (according
to the signature morphism) of the new contract axiom is
a theorem according to the body presentation.
The removal/addition of a body axiom works dually. The
addition of an axiom is always a transformation, and the
removal only if we establish that contract axioms are still
translated into theorems in the (new) body.

P3) This is always a transformation provided that the new
wiring still defines a signature morphism.

P4) This is a transformation when the wires that were con-
nected to the combined elements are updated appropri-
ately. Each wire connected to these elements before the

4We do not give the proof in this paper that these conditions are sufficient
to define a transformation.

Producer0

Producer

Conjunction

Conjunction

Producer01

Producer

x0, x1

x0, x1

y0, y1

y0, y1

x0 7→send0

x1 7→send1

x0 7→extract_a0

x1 7→extract_a1

y0 7→send0

y1 7→send1

y0 7→extract_b0

y1 7→extract_b1

Fig. 3. The example architecture.

patch is connected to the element resulting from the com-
bination after the patch. Note that if some propositions of
elements to be combined have the same name, there are
two options: either merging them, or renaming them to
get a disjoint union. Both options define a transformation,
but the semantics of the resulting architecture may differ.

Note that, as already stated, our definition excludes some
patches, the most notable being the addition of elements or
wires. A larger class of patches will be addressed in an exten-
sion of our framework involving more complex constructions
than mere functors. Let us also insist on the fact that our
approach is independent from the inner nature of elements
(given by the category Pres). Indeed, we only require body
and contracts to be objects in a category with all finite colimits.

B. Illustration on a Simple Producer-Consumer Example

We illustrate our work with a simple Producer-Consumer
example inspired by [8] and presented in Fig. 3.

1) Example Description: Two bit producers send bits to a
connector that computes and outputs their conjunction. (We do
not describe the Consumer in the following.) These elements
are built from the presentations described in LTL in Fig. 4.

Fig. 4 (left) shows the contract of a producer that succes-
sively produces and sends bits. The atomic proposition prod0

(resp. prod1) encodes the production of 0 (resp. 1) and current
encodes the value of the last produced bit (true for 1, false for
0). Similarly, when send0 (resp. send1) is true, a 0 (resp.
1) is sent. Fig. 4 (middle top) contains the body Producer0,
of a producer that cannot produce 1. He can only produce 0,
send 0, or leave everything unchanged. Fig. 4 (middle bottom)
shows the body of a producer that cannot produce two equal
bits consecutively. After producing 0, the next bit must be 1
(if it produces one) and after 1 must come 0.

From these three presentations, we define the two elements
representing producers. Both share the contract defined by
the presentation Producer . The presentation Producer0 (resp.
Producer01) is the body of the producer represented at the
left (resp. right) of Fig. 3. The fact that both bodies respect
their contracts is ensured by the existence of two morphisms
one from Producer to Producer0, and one from Producer to
Producer01. Such morphisms are based on identity signature
morphisms (since contracts and bodies share the same signa-
ture) and the fact that all axioms of Producer are theorems
in the theories presented by Producer0 and Producer01.

We also define a simple conjunction connector in Fig. 4
(right). The body and the contract of this connector are the

Producer

Signature: send0, send1, prod0, prod1,
current

Axioms:
1: G(prod0 → X¬current)
2: G(prod1 → Xcurrent)
3: G((send0 → ¬current) ∧ (send1 →

current))
4: G((send0 ∨ send1)→ (current ↔

Xcurrent
5: G(prod0 ∨ prod1 ∨ (current ↔

Xcurrent))

Producer0

Signature: same as for Producer

Axioms:
1: G(prod0 → X¬current)
2: G(¬prod1 ∧ ¬send1)
3: G(send0 → ¬current)
4: G(send0 → (current ↔ Xcurrent)
5: G(prod0 ∨ (current ↔ Xcurrent))

Producer01

Signature: same as for Producer

Axioms:
1: all axioms of Producer
2: G(current → ¬prod1)
3: G(¬current → ¬prod0)

Conjunction

Signature: extract_a0, extract_a1,
extract_b0, extract_b1, curr_a, curr_b,
out

Axioms:
1: G(extract_a0 → X¬curr_a)
2: G(extract_a1 → Xcurr_a)
3: G(extract_b0 → X¬curr_b)
4: G(extract_b1 → Xcurr_b)
5: G(extract_a0 ∨ extract_a1 ∨

(curr_a↔ Xcurr_a))
6: G(extract_b0 ∨ extract_b1 ∨

(curr_b↔ Xcurr_b))
7: G(out↔ (curr_a ∧ curr_b))

Fig. 4. Body and contracts in the example.

same. This connector computes the conjunction of the two bits
received from the producers. It may send its result to another
component, but we do not represent this aspect.

2) Producer-Consumer Patches: We are now able to con-
sider some of the aforementioned patches on this example.

• Renaming of a proposition: Let us change the name of
the proposition current to buffer in the Producer0 body.
This modification implies the update of the presentation
morphism that relates the body to the contract in order
to have a correct patch. The proposition current of the
contract Producer must be mapped to the new proposi-
tion buffer of the body Producer0 so that the new body
still implements its contract.
If the renaming occurs on a proposition interfering with
other elements (such as prod0) then modifications on
wires must be considered in order to have a correct patch.

• Removal/addition of a contract axiom: Consider the re-
moval of an axiom in one of the producers’ contract. As
stated in section IV-A, this is a transformation, since the
body still respects the new contract. Note that the contract
of the whole system (defined as the architecture colimit)
is impacted by this transformation.
Consider now a patch defined by the addition of an axiom
to the contract of the producer on the left of Fig. 3. We
define a new specification Producer_bis by adding the
axiom G¬prod0 to Producer . We must prove that we still
have a morphism between the new contract Producer_bis
and the body Producer0. This amounts to check that the
translation of the new axiom according to the signature
map (the identity in this case) is a theorem according
to the theory presented by the body Producer0. Here
G¬prod0 is not provable from the axioms of Producer0.
Thus, this patch is not a transformation.

• Removal/addition of a body axiom: We now remove
axiom 2 of Producer01. The new body still respects
its contract (all axioms of Producer are still axioms,
and thus theorems of the new body). So this patch is
a transformation. Note that it modifies the body of the
whole system, since it is now possible for the producer

on the right of Fig. 3 to produce several 1 successively.
• Combination of several elements of the same nature: Let

us consider the combination of both producers into a
single one. We can define several patches, depending on
the choices concerning the merging of the propositions
that have the same name. If we merge all of them, the
resulting element body produces only one bit at each
instant. This bit must comply with both the axioms
of Producer0 and of Producer01. It is sent twice to
the connector Conjuction, one with each wire. The
only possible behaviours compatible with Producer0 and
Producer01, are to never produce anything, or to produce
a 0 and then no more bit.
If we do not merge any proposition, the resulting element
body produces two bits at the same time: one according
to the body axioms of Produce0 sent through one wire,
the other according to the axioms of Produce01 sent
through the other wire. The global behaviour is actually
the same as before the patch. As stated in section IV-A,
both patches define a transformation.

V. CONCLUSION

In this paper we propose a first step towards a categorical
formalization of architectural patches. We have introduced a
generic categorical framework for specifying and representing
architectures. The semantics of component aggregation is
given, as in prominent previous approaches, by the colimit
of a diagram. In this context, a patch is a functor between two
architectures. With this formalization, we are not only able
to assert the correctness of a given patch (which translates
e.g. to proof obligations), but the semantics of the component
composition also implies that the resulting architecture is
correct. The precise form of the proof obligations and the
amount of work required to discharge them must be explored
by looking at more complex and realistic examples (such as a
satellite flight software).

The main limitation of this proposal is that the model, in
its current state, is not able to deal with complex architectural
evolutions, such as adding or removing elements. We believe

that managing such kind of evolutions is possible in our frame-
work, but may involve more complex categorical concepts.
Another natural extension of our framework would be to define
contracts not only for elements but also to groups of elements
or more globally to the whole architecture. This may require
the proposal of a more complex representation of what is an
architecture in the categorical framework. We leave all these
questions for future work.

On a longer-term scale, we intend to explore the decom-
position of patches. Indeed, specifying (functional as well as
non-functional) evolutions for a distributed system necessitates
a formal approach to decompose this (global) evolution into
evolutions of the architectural elements. Each (local) evolution
is then designed and results in a (local) patch. Then, these
patches are validated and recomposed. Having a formal frame-
work to support this process would enable to safely establish
the list of proof obligations all parties have to discharge.

ACKNOWLEDGMENT

We thank Virginie Wiels for stimulating discussions about
earlier work [4] on categorical approaches to evolution.

REFERENCES

[1] J. Buisson, C. Carro, and F. Dagnat, “Issues in applying a model driven
approach to reconfigurations of satellite software,” in Workshop on Hot
Topics in Software Upgrades, Nashville, Tennessee, USA, Oct. 2008.

[2] I. Lynagh, “An algebra of patches,” 2006, http://urchin.earth.li/~ian/
conflictors/paper-2006-10-30.pdf. A more recent version of the frame-
work may be found at http://projects.haskell.org/camp/.

[3] J. Jacobson, “A formalization of darcs patch theory using inverse semi-
groups,” UCLA, Tech. Rep. 09-83, 2009.

[4] V. Wiels and S. M. Easterbrook, “Management of evolving specifications
using category theory,” in ASE, 1998, pp. 12–21.

[5] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins, “Making
components contract aware,” Computer, vol. 32, no. 7, pp. 38–45, 1999.

[6] A. Pnueli, “The temporal semantics of concurrent programs,” Theoretical
Computer Science, vol. 13, pp. 45–60, 1981.

[7] J. L. Fiadeiro and T. Maibaum, “Temporal theories as modularisation
units for concurrent system specifications,” Formal Aspects of Computing
Journal, vol. 4, no. 3, pp. 239–272, 1992.

[8] P. Castro, N. Aguirre, C. López Pombo, and T. Maibaum, “Towards
managing dynamic reconfiguration of software systems in a categorical
setting,” in ICTAC 2010, 2010, pp. 306–321.

