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Abstract
We consider fair allocation of indivisible items un-
der an additional constraint: there is an undirected
graph describing the relationship between the items,
and each agent’s share must form a connected sub-
graph of this graph. This framework captures, e.g.,
fair allocation of land plots, where the graph de-
scribes the accessibility relation among the plots.
We focus on agents that have additive utilities for
the items, and consider several common fair di-
vision solution concepts, such as proportionality,
envy-freeness and maximin share guarantee. While
finding good allocations according to these solution
concepts is computationally hard in general, we de-
sign efficient algorithms for special cases where the
underlying graph has simple structure, and/or the
number of agents—or, less restrictively, the num-
ber of agent types—is small. In particular, despite
non-existence results in the general case, we prove
that for acyclic graphs a maximin share allocation
always exists and can be found efficiently.

1 Introduction
The department of computer science at University X is about
to move to a new building. Each research group has prefer-
ences over rooms, but it would also be desirable for each group
to have a contiguous set of offices, to facilitate communica-
tion. This situation can be seen as a problem of fair division
(where agents are research groups and items are offices) with
an additional connectivity requirement. This constraint could
be captured by an undirected graph whose vertices are rooms
(items) and there is an edge between two vertices if the respec-
tive rooms are adjacent; each agent should obtain a connected
piece of this graph.

In this paper, we introduce and study a formal model for
such scenarios. Specifically, we consider the problem of fair
allocation of indivisible items in settings where there is a graph
capturing the dependency relation between items, and each
agent’s share has to be connected in this graph. Besides the
example in the first paragraph, our model captures a variety
of applications, such as time-sharing a processor where tasks
can be switched only at pre-defined times, allocating a set
of indivisible land plots, or assigning administrative duties

to members of an academic department, where there are de-
pendencies among tasks (e.g., dealing with incoming foreign
students has some overlap with preparing study programmes
in foreign languages, but not with fire safety).

Our contribution We propose a framework for fair division
under connectivity constraints, and investigate the complexity
of finding good allocations in this framework according to
three well-studied solution concepts: proportionality, envy-
freeness (in conjunction with completeness), and maximin
share guarantee. We focus on additive utility functions.

For proportionality and envy-freeness, we obtain hardness
results even for very simple graphs: finding proportional al-
locations turns out to be NP-hard even for paths, and finding
complete envy-free allocations is NP-hard both for paths and
for stars. Nevertheless, we also obtain some positive results
for these solution concepts. In particular, both proportional
and complete envy-free allocations can be found efficiently
when the graph is a path and agents can be classified into a
small number of types, where agents are said to have the same
type when they have the same preferences over items.1 If we
assume that not just the number of player types, but the actual
number of players is small, we obtain an efficient algorithm
for finding proportional allocations on arbitrary trees.

Recently, several papers have studied the concept of the
maximin share guarantee (MMS) [Budish, 2011], which cap-
tures a desirable property of allocations that is easy to achieve
for divisible items via cut-and-choose protocols. For indi-
visible goods, such allocations need not exist [Procaccia and
Wang, 2014; Kurokawa et al., 2016]. We prove a strong posi-
tive result for our setting: an MMS allocation always exists if
the underlying graph is a tree, and can be computed efficiently.
Our algorithm is an adaptation of the classic last-diminisher
procedure for the divisible case. In contrast, we provide an
example where the underlying graph is a cycle of length 8
and there is no MMS allocation. We believe that these re-
sults are useful for developing an intuitive understanding of
the concept of MMS; in particular, our example for the cycle
is much simpler than known examples of instances with no
MMS allocation in the absence of graph constraints.

1The same parameter was used by Brânzei et al. [2016] to obtain
results for maximizing social welfare; similar ideas have been used
in the context of coalition formation [Shrot et al., 2010; Aziz and
De Keijzer, 2011].



Related work Fair allocation of indivisible items has received
a considerable amount of attention in the (computational) so-
cial choice literature; we refer the reader to a survey by [Bou-
veret et al., 2016]. However, ours is the first attempt to impose
a graph-based constraint on players’ bundles. In contrast, in
the context of fair allocation of divisible items (also known
as cake-cutting) contiguity is a well-studied requirement. For
instance, [Stromquist, 1980] showed that an envy-free division
in which each player receives a single contiguous piece always
exists, but it cannot be obtained by a finite algorithm, even for
three players [Stromquist, 2008]. These results extend to equi-
table division with contiguous pieces [Cechlárová et al., 2013;
Aumann and Dombb, 2015; Cechlárová and Pillárová, 2012].
[Bei et al., 2012] consider fair allocations with contiguous
pieces that approximately maximize social welfare; [Aumann
et al., 2013] investigate a variant of this question without
fairness constraints.

[Conitzer et al., 2004] analyze a combinatorial auction set-
ting that is somewhat similar to ours: in their model, too,
there is an undirected graph describing connections between
items, and each agent’s bid is connected with respect to this
graph. They provide an algorithm for finding an allocation
that maximizes the social welfare and is in FPT with respect
to the treewidth of the item graph. [Aumann et al., 2015]
consider auctioning of a time interval, and obtain results both
for the case of pre-determined time slots (which corresponds
to the model of [Conitzer et al., 2004], with the item graph
being a line) and for the case where the interval can be cut
into arbitrary slots (which is similar in spirit to cake-cutting).
However, neither paper considers any fairness constraints.

Two very recent papers, like ours, combine graphs and fair
division. [Chevaleyre et al., 2017] consider the setting where
agents are located in vertices of a graph. Each agent has an
initial endowment of goods and can trade with her neighbors in
the graph. The authors ask what outcomes can be achieved by
a sequence of mutually beneficial deals. In the work of [Abebe
et al., 2017], the graph describes a visibility relation: agents
are located in vertices and an agent can only envy agents who
are adjacent to her. In contrast, in our model graphs represent
the relationship between items rather than agents.

2 Our Model
We study fair allocation of indivisible goods where each allo-
cated bundle is connected in an underlying graph.

Definition 2.1. An instance of the connected fair division
problem (CFD) is a triple I = (G,N,U) where

• G = (V,E) is an undirected graph,

• N = {1, . . . , n} is a set of players, or agents,

• U is an n-tuple of utility functions ui : V → R>0, where∑
v∈V ui(v) = 1 for each i ∈ N .

We refer to elements of V as items, and denote the number of
items by m.

Note that when G is a clique, CFD is equivalent to the
classic problem of fair allocation with indivisible items.

For each X ⊆ V , we set ui(X) =
∑

v∈X ui(v), so valua-
tions in this paper are always additive. Two players i, j ∈ N

are of the same type if ui(v) = uj(v) for all v ∈ V . We
denote the number of player types in a given instance by p.

An allocation is a function π : N → 2V assigning each
player a bundle of items. An allocation π is valid if for each
player i ∈ N the bundle π(i) is connected in G and no item
is allocated twice, so that π(i) ∩ π(j) = ∅ for each pair of
distinct players i, j ∈ N . We say that a valid allocation π is

• proportional if ui(π(i)) > 1
n for all i ∈ N ,

• envy-free if ui(π(i)) > ui(π(j)) for all i, j ∈ N , and

• complete if
⋃

i∈N π(i) = V .

Notice that an allocation that gives everybody an empty bundle
is envy-free, so, to better express the idea of fairness, the
requirement of envy-freeness is typically accompanied by
completeness or Pareto-optimality.

We also consider maximin share (MMS) allocations [Budish,
2011], adapting the usual definition to our setting as follows.
Given an instance I = (G,N,U) of CFD with G = (V,E),
let Πn denote the space of all partitions of V into n connected
pieces. The maximin share guarantee of a player i ∈ N is

mmsi(I) = max
(P1,...,Pn)∈Πn

min
j∈{1,...,n}

ui(Pj).

Note that since we are only taking the maximum over con-
nected partitions, these values may be lower than in the general
setting without graph constraints. A valid allocation π is a max-
imin share (MMS) allocation if we have ui(π(i)) > mmsi(I)
for each player i ∈ N .

We consider the following computational problems that all
take an instance I = (G,N,U) of the connected fair division
problem as input. For computational purposes, we assume that
utility functions take values in Q. Hardness results will use
unary encodings of utility values (unless noted otherwise).

• PROP-CFD: Does I admit a proportional valid allocation?

• COMPLETE-EF-CFD: Does I admit a complete envy-free
valid allocation?

• MMS-CFD: Does I admit an MMS allocation?

We note that, given a valid allocation, one can check in poly-
nomial time whether it is proportional or envy-free; thus, the
respective computational problems are in NP.

In what follows, we assume that the number of items m is
at least as large as the number of players n, since otherwise at
least one player gets nothing. Also, given a positive integer k,
we write [k] to denote the set {1, . . . , k}.

3 Proportionality
We start with the bad news: it is hard to find a proportional
allocation, even if the graph G is a path.

Theorem 3.1. PROP-CFD is NP-complete even if G is a path.

Proof. We describe a polynomial-time reduction from the
NP-complete problem EXACT-3-COVER (X3C) [Garey and
Johnson, 1979]. Recall that an instance of X3C is given
by a set of elements X = {x1, x2, . . . , x3s} and a family
T = {T1, T2, . . . , Tr} of three-element subsets of X; it is a
‘yes’-instance if and only ifX can be covered by s sets from T .
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Figure 1: Graph constructed in the proof of Theorem 3.1.

This problem remains NP-complete if for each element x ∈ X
its frequency px = |{T ∈ T : x ∈ T}| is at most 3.

Consider an instance J = (X, T ) of X3C; for each T ∈ T ,
we denote the elements of T by x1

T , x
2
T , x

3
T . We construct an

instance I of PROP-CFD as follows. There are three small
vertices v1

T , v
2
T , v

3
T for each set T ∈ T , a set of s big vertices

B = {b1, b2, . . . , bs} and a dummy vertex w. The edges of G
are shown in Figure 1.

There is one player iT for each T ∈ T , one player ix for
each x ∈ X and one dummy player d. Hence the total number
of players is n = 3s+ r + 1. Define the utilities as:

uiT (v) =


1/(3n) if v = vkT
1/n if v ∈ B
(n− s− 1)/n if v = w
0 otherwise

uix(v) =

 1/n if v = vkT and x ∈ T
(n− 3px)/n if v = w
0 otherwise

ud(v) =

{
1 if v = w
0 otherwise

By construction ui(V ) = 1 for each i ∈ N . As player d
assigns a positive value to vertex w only, she must receive
this vertex in every proportional allocation. Given that w is
allocated to d, an allocation is proportional if and only if each
player ix receives a small vertex vkT such that x ∈ T , and each
player iT receives vertices v1

T , v
2
T , v

3
T (a triple interval) or a

vertex from B.
Suppose that J admits a cover T ′ of size s. Let µ be a

matching between T ′ and B. Assign intervals to players ix
and iT as follows:
• For each T ∈ T ′, player iT is assigned to vertex µ(T ).
• For each T /∈ T ′, player iT is assigned to the triple

interval v1
T , v

2
T , v

3
T .

• Each player ix is assigned to the small vertex vkT such
that x = xkT and T ∈ T ′.

Then each player is assigned one connected piece and her
value for that piece is at least 1/n.

Conversely, suppose that I admits a proportional valid al-
location. As |B| = s, the number of T -players assigned to
triple intervals is r − s. Hence, the number of triple intervals
available for x-players is s, and the respective sets constitute
an exact cover for X .

In contrast, if G is a star, finding a proportional allocation
is easy. Our algorithm for this problem, as well as all other
algorithms in this section, use matching techniques and can be
adapted to also find valid allocations that maximize egalitarian
welfare, i.e., the utility of the worst-off agent.
Theorem 3.2. PROP-CFD is solvable in polynomial time if
G is a star.

3.1 Bounded Number of Agent Types
If the underlying graph is a path and all players are of the
same type, then a simple greedy algorithm finds a proportional
allocation (or reports that none exists) in linear time: we
build connected pieces one by one, by moving along the path
from left to right and adding vertices to the current piece
until its value to a player reaches 1/n; at this point we start
building a new piece. This procedure creates at most n pieces;
a proportional valid allocation exists if and only if it creates
exactly n pieces. More generally, ifG is a path and the number
of agent types is bounded by a constant, a simple dynamic
program can check the existence of a proportional allocation
in polynomial time. A problem is slice-wise polynomial (XP)
with respect to a parameter k if each instance I of this problem
can be solved in time |I|f(k) where f is a computable function.
Theorem 3.3. PROP-CFD is in XP with respect to the number
of player types p if G is a path.

Proof. Let G = (V,E), where V = {v1, . . . , vm}, E =
{{vi, vi+1} : i ∈ [m − 1]}. Suppose there are nt players
of type t, for t ∈ [p]. We say that a player is happy if she
gets a connected piece of value at least 1/n. Let V0 = ∅ and
Vi = {v1, . . . , vi}, i > 1.

For i = 0, . . . ,m, and a collection of indices j1, . . . , jp
such that 0 6 jk 6 n for each k ∈ [p], let Ai[j1, . . . , jp] = 1
if there exists a valid partial allocation π of Vi with jk happy
agents of type k, k ∈ [p], and let Ai[j1, . . . , jp] = 0 otherwise.
Clearly, A0[j1, . . . , jp] = 1 if and only if jk = 0 for all
k ∈ [p]. For i = 1, . . . ,m, we have Ai[j1, . . . , jp] = 1 if
and only if there exists a value s < i and t ∈ [p] such that
As[j1, . . . , jt − 1, . . . , jp] = 1 and a player of type t values
the set of items {vs+1, . . . , vi} at 1/n or higher.

A proportional allocation exists if Am[j1, . . . , jp] = 1 for
some collection of indices j1, . . . , jp such that jt > nt for all
t ∈ [p]. There are at most (m+ 1)(n+ 1)p values to compute,
and each value can be found in time O(mt) using unit cost
arithmetics. Thus, PROP-CFD is in XP with respect to p.

3.2 Bounded Number of Agents
Theorem 3.3 immediately implies that PROP-CFD can be
solved in polynomial time if the number of agents n is bounded
by a constant and the graph is a path. A more careful argument
shows that PROP-CFD on trees, is, in fact, fixed parameter
tractable with respect to this (weaker) parameter. A problem
is fixed parameter tractable (FPT) with respect to a parameter
k if each instance I of this problem can be solved in time
f(k)poly(|I|) where f is a function that depends only on k.
Theorem 3.4. PROP-CFD is in FPT with respect to n when
G is a tree.

Proof sketch. We turn G into a rooted tree by choosing an ar-
bitrary node r as the root. Given a vertex v, we denote byC(v)
the set of children of v and by D(v) the set of descendants of
v (including v) in the rooted tree.



For each v ∈ V , S ( N , and i ∈ N \ S, let Πi,v,S be the
set of all valid allocations π : S ∪ {i} → 2D(v) with v ∈ π(i)
and uj(π(j)) > 1/n for all j ∈ S, and define

Av[i, S] = max {ui(π(i)) : π ∈ Πi,v,S};

by convention, Av[i, S] = −∞ when Πi,v,S is empty. Note
that we have a ‘yes’-instance of PROP-CFD if and only if
Ar[i,N \ {i}] > 1/n for some i ∈ N .

To complete the proof, we show that the values Av[i, S] can
be efficiently computed in a bottom-up manner. We observe
that for every internal vertex v of the rooted tree, in each
allocation π ∈ Πi,v,S the bundle of each player in S is fully
contained in a subtree D(z) for some z ∈ C(v). This induces
a partition of players in S into |C(v)| groups. We can go
through all possible partitions of S with at most |C(v)| parts
and try to find a valid allocation compatible with this partition,
maximizing the utility of each agent. Such an allocation can
be found efficiently by solving a matching problem. We omit
the details due to space constraints.

We note that placing strong constraints on the underlying
graph is crucial for obtaining the easiness results in Theo-
rems 3.3 and 3.4. This is illustrated by the following simple
proposition, obtained by adapting a proof by [Demko and
Hill, 1998] for the standard setting (with no graph constraints),
which shows that the XP membership with respect to the num-
ber of players/types cannot be extended to arbitrary graphs.
Proposition 3.5. When utilities are encoded in binary, PROP-
CFD is NP-complete even for n = 2, p = 1, and even if the
underlying graph G is bipartite.

4 Envy-freeness
Envy-freeness turns out to be computationally more challeng-
ing than proportionality: finding a complete envy-free allo-
cation is NP-hard even if the underlying graph is a star (for
complete graphs, this result is shown by Lipton et al. [2004]).
Theorem 4.1. COMPLETE-EF-CFD is NP-complete even if
G is a star.

Proof. Our hardness proof proceeds by a reduction from IN-
DEPENDENT SET. Recall that an instance of INDEPENDENT
SET is given by an undirected graph (W,L) and an integer k;
it is a ‘yes’-instance if and only if (W,L) contains an indepen-
dent set of size k. Given an instance (W,L) of INDEPENDENT
SET, we construct an instance of COMPLETE-EF-CFD as
follows. For each vertex w ∈ W we create an item w and a
player iw. Similarly, for each edge ` ∈ L we create an item `
and a player i`. We also create a set of dummy items D with
|D| = k, as well as an item c and a player ic. The graph G
is a star with center c and set of leaves W ∪ L ∪D. Finally,
define utility functions as follows.
• For each w ∈ W , we set uiw(w) = 1/(k + 1) and
uiw(d) = 1/(k + 1) for each d ∈ D.
• For each ` ∈ L with ` = {x, y}, we set ui`(`) = 3/7,
ui`(x) = ui`(y) = 2/7.
• We set uic(c) = 1.
• All other utilities are set to 0.

We will now argue that there exists an independent set of
size k in the graph (W,L) if and only if this instance of CFD
admits a complete envy-free valid allocation.

Suppose there exists an independent set X ⊆W of size k.
We construct an allocation π as follows:

• player ic receives X ∪ {c};
• for w ∈W \X , player iw receives w;
• for w ∈ X , player iw receives one item in D;
• for ` ∈ L, player i` receives `.

Clearly, π is a complete valid allocation. It remains to show
that π is envy-free. First, player ic does not envy any other
player since she receives all her positive-utility items. Vertex
players {iw : w ∈ W} receive utility 1/(k + 1) in π; they
could only envy someone who has multiple dummies, but no
one does. Edge players {i` : ` ∈ L} receive utility 3/7 in π;
the only way an edge player i` could envy another player is
if that player got both items corresponding to endpoints of `.
But the only player who receives more than one vertex item is
player ic whose items correspond to an independent set. So
no player envies anyone, and π is envy-free.

Conversely, suppose that there is a complete envy-free valid
allocation π. By completeness, π allocates the central piece c
to some player. If ic does not receive c then she would envy the
player who receives it; so c ∈ π(ic). Thus, every other player
receives at most one item. Since π is complete, this means
that ic gets at least k leaf items. Further, if i` does not receive
`, she would envy the player who receives it, so π(i`) = {`}.
Next, consider the bundle of player ic. If it contains more
than one dummy item, vertex players would envy ic. Thus,
it contains at least one item w ∈ W . If π(ic) also contains
a dummy item, iw would envy ic, so π(ic) consists of c and
k vertex items. Now, if there is an edge ` = (x, y) such that
x, y ∈ π(ic), then player i` envies ic. Hence, π(ic) \ {c}
forms an independent set of size k in (W,L).

We also obtain a hardness result for paths; the proof is
similar to that of Theorem 3.1.

Theorem 4.2. The problem COMPLETE-EF-CFD is NP-
complete even if G is a path.

On the positive side, just as for PROP-CFD, the problem
COMPLETE-EF-CFD is also in XP with respect to the number
of player types p, as long as G is a path.

Theorem 4.3. COMPLETE-EF-CFD is in XP with respect to
the number of player types p if G is a path.

Proof sketch. Note that for an allocation to be envy-free, all
pieces assigned to players of a given type should have the
same value to players of that type. When G is a path, there are
only

(
m+1

2

)
6 m2 different connected bundles. Hence there

are at most m2 many possibilities for the utility that a player
of a given type can obtain in a valid allocation.

Our algorithm works as follows. For each player type, it
guesses the utility that players of that type assign to their
pieces (this guessing can be implemented by going over all
possibilities, as there are at most

(
m2
)p

of them). It then
proceeds similarly to the dynamic programming algorithm in
the proof of Theorem 3.3; the only difference is that, when



creating a piece of the form {vs+1, . . . , vi} for a player of a
given type, it checks that the utility of that player type for this
piece is what it guessed for that type, and that other players’
utility for this piece is at most their guessed utility.

5 Maximin Share Guarantee
After Budish [2011] introduced the notion of an MMS allo-
cation, it was open for some time whether every allocation
problem (without connectivity constraints) admitted such an
allocation. Procaccia and Wang [2014] found a counterex-
ample. A family of more compact examples was found by
Kurokawa et al. [2016]; these examples implicitly use an
underlying grid graph; hence, for grid graphs, existence of
MMS allocations is not guaranteed. Here, we show that for
trees an MMS allocation always exists. Our argument is con-
structive, and our algorithm corresponds to a discrete version
of the last-diminisher method, which ensures proportionality
while cutting a divisible resource [see, e.g., Brams and Taylor,
1996]. This method proceeds by letting one player identify
a bundle of items. Every other player, in order, then has the
option to diminish this bundle by removing some of the items
from it. The last player who chose to diminish is allocated the
(diminished) bundle. The same procedure is then applied to
divide the rest of the cake among the remaining n− 1 players.

We first describe an efficient procedure that guarantees each
player a pre-specified level of utility.

Proposition 5.1. Let I = (G,N,U) be an instance of CFD
where G is a tree and let (qi)i∈N be an n-tuple of rational
numbers. If mmsi(I) > qi for all i ∈ N , then there exists a
valid allocation π such that each player i ∈ N receives the
bundle of value at least qi, i.e., ui(π(i)) > qi. Moreover, one
can compute such an allocation in polynomial time.

Proof. We will give an informal description of our recursive
algorithmA (Algorithm 1), followed by pseudocode. For each
X ⊆ V , we let G \X denote the subgraph induced by V \X;
also, we denote the restriction of ui to X by ui|X .

The algorithm first checks whether its input graph G′ has
a value of at least qi for each player i ∈ N ′; if this is not the
case, it fails. Then, if there is only one player, the algorithm
simply returns the allocation that assigns all items to that
player. When there are at least two players, A turns the graph
into a rooted tree by choosing an arbitrary node as its root;
denote by D(v) the set of descendants of a vertex v in this
rooted tree. Then each player i finds a vertex vi such that his
value for D(vi) is at least qi, but for each child w of v his
value for D(w) is less than qi. The algorithm then allocates
D(vi) to the last-diminisher i whose vertex vi has minimal
height. The player i exits with the bundle D(vi), and the same
algorithm A is called on the remaining instance (see Fig. 2).

It is immediate that A runs in polynomial time. Let
In, . . . , I1 be the sequence of instances constructed by A
when called on I and (qi)i∈N , where Ik = (Gk, Nk,Uk) and
|Nk| = k (i.e., I = In). If A does not fail on any of these in-
stances, then A(I, (qi)i∈N ) returns a desired allocation: each
agent is allocated a bundle that she values at least as highly as
her given value qi. We need to prove that none of the recursive
calls fails. To this end, we will prove the following lemma.

Algorithm 1: A(I ′, (qi)i∈N ′)

input :I ′ = (G′, N ′,U ′) and (qi)i∈N ′ where G′ is a
subtree of G, N ′ is a subset of N , and
u′i = ui|V ′ for all i ∈ N ′

output :A valid allocation π such that ui(π(i)) > qi for
all i ∈ N ′

1 if u′i(V ′) < qi for some i ∈ N ′ then
2 return fail
3 else if |N ′| = 1 then
4 return π where π(i) = V ′ for {i} = N ′;
5 else
6 Turn G′ into a rooted tree;
7 Find i ∈ N ′ and vi ∈ V ′ such that u′i(D(vi)) ≥ qi,

but u′j(D(w)) < qj for each child w of vi and each
player j ∈ N ′;

8 Set I ′′ = (G′ \D(vi), N
′ \ {i},U ′′) where U ′′ is

given by u′′j = u′j |V ′\D(vi) for all j ∈ N ′ \ {i};
9 if A(I ′′, (qj)j∈N ′\{i}) does not fail then

10 Set π′ ← A(I ′′, (qj)j∈N ′\{i});
11 Set π(i) = D(vi) and π(j) = π′(j) for each

j ∈ N ′ \ {i};
12 return π;

Lemma 5.2. mmsj(Ik) > qj for all k ∈ [n] and all j ∈ Nk.

Proof. The proof proceeds by backwards induction on k. For
k = n the statement of the lemma is true. Suppose that the
claim is true for some k > 1; we will prove it for k − 1. Con-
sider the player i ∈ Nk \Nk−1, and letD(vi) be the bundle al-
located to this player. For each player j ∈ Nk−1 = Nk\{i} by
the inductive hypothesis we have mmsj(Ik) > qj . Consider a
partition P = (P1, . . . , Pk) witnessing this; uj(P`) > qj for
each ` ∈ [k]. Assume without loss of generality that vi ∈ P1.
Then D(vi) is fully contained in P1: if there is a vertex w in
D(vi) \ P1, then the part of P that contains w is fully con-
tained in a subtree rooted at a child of vi, and hence the value
of that part is strictly less than qj , a contradiction.

Now, if P1 \D(vi) is not empty, then it is a subtree of G,
and there is another part P ∈ P that is adjacent to P1 \D(vi)
in G. Therefore, P ′ = (P \ {P1}) ∪ {P ∪ (P1 \ D(vi))}
is a partition of Gk−1 into k − 1 connected components. By
construction, uj(P ′) > qj for each P ′ ∈ P ′, which proves
that mmsj(Ik−1) > qj .

Now, consider what happens when A is called on Ik and
(qi)i∈Nk

for some k ∈ [n]. Let Gk = (Vk, Ek). We have
ui(Vk) > mmsi(Ik) > qi for all i ∈ Nk, which implies that
the algorithm does not fail. This completes the proof.

Proposition 5.1 relies on being given (qi)i∈N as its input,
so we still need to show that MMS values on trees can be com-
puted efficiently. It turns out that this can be accomplished
by the same recursive algorithm. We note that for the gen-
eral problem (without graph constraints, or equivalently, on
complete graphs), computing MMS values is NP-hard, though
they can be well-approximated [Woeginger, 1997].
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(a) The first player proposes a bundle.

rr

(b) Other players may diminish the bundle.

r

· · ·

(c) The last-diminisher receives the bundle.

Figure 2: A discrete version of the last-diminisher method

Lemma 5.3. For an instance of CFD where G is a tree, and a
player i ∈ N , we can compute mmsi(I) in polynomial time.

Proof sketch. Calculating mmsi(I) is the same as maximiz-
ing the worst payoff for the instance I ′′ where all players are
copies of player i. That is, mmsi(I) is equal to the maximum
value of q such that A does not fail on (I ′′, (q, . . . , q)). By
scaling up the utilities, we can ensure that this value of q is a
not-too-large integer (we omit the arithmetical details), and
can therefore be found by binary search.

It now follows from Proposition 5.1 and Lemma 5.3 that for
trees an MMS allocation can be computed efficiently.

Theorem 5.4. Every instance I = (G,N,U) of CFD where
G is a tree admits an MMS allocation. Moreover, such an
allocation can be computed in polynomial time.

The known examples of instances without MMS allocations
are very intricate. Our graph-based setting allows for simpler
constructions: our next example shows that an MMS allocation
may not exist on a cycle of 8 vertices. We conjecture that this
is the shortest cycle that admits such an example. Our example
is similar in spirit to an example for 2-additive utility functions
by [Bouveret and Lemaı̂tre, 2015].

Example 5.5. Consider an instance I = (G,N,U) of CFD
where G = (V,E) with V = { vi | i = 1, 2, . . . , 8 }, E =
{ {vi, vi+1} | i = 1, 2, . . . , 7 }∪{{v1, v8}},N = {1, 2, 3, 4},
and the utilities are given as follows.

v1 v2 v3 v4 v5 v6 v7 v8

Players 1 & 2 1 4 4 1 3 2 2 3
Players 3 & 4 4 4 1 3 2 2 3 1

To normalize to 1, each utility value above is divided by 20.
Now, we have mms1(I) = mms2(I) > 1/4, as witnessed
by the partition P1 = {{v1, v2}, {v3, v4}, {v5, v6}, {v7, v8}},
which offers value 1/4 for these players. Similarly, we have
mms3(I) = mms4(I) > 1/4, as witnessed by the partition
P2 = {{v2, v3}, {v4, v5}, {v6, v7}, {v8, v1}}. These two par-
titions are illustrated below (note the cyclic shift):

P1: v3

v2
v1

v8

v7

v6
v5

v4

P2: v3

v2
v1

v8

v7

v6
v5

v4

Now, suppose towards a contradiction that the instance I
admits an MMS allocation π. Then π has to allocate at least
two vertices to each player, as no player values any single item
at 1/4 or higher. This means that π partitions the cycle into
either P1 or P2. Suppose first that π cuts the graph into P1.
Then, there is only one connected piece in P1 that players 3
and 4 value at 1/4 or higher, namely, {v1, v2}, so at least one
of these players is allocated a piece whose value is less than
his maximin share. A similar argument holds when π cuts the
graph into P2. Therefore, there is no MMS allocation.

6 Conclusions and Future Work
There are several exciting directions for the study of connected
fair division of indivisible goods. For the solution concepts we
have studied in this paper, one can ask whether certain graph
classes yield better approximations than the general case, both
in terms of existence guarantees and complexity results. In
particular, it would be interesting to obtain a characterization
of graphs for which an MMS allocation is guaranteed to ex-
ist. There are also further solution concepts that we have not
considered, most notably the maximum Nash welfare solu-
tion [see Caragiannis et al., 2016], which could be studied in
this context both from the axiomatic and the computational
points of view. Another promising direction would be to ex-
tend the work to other preference representations, including
ordinal preferences [Aziz et al., 2015], or to chores instead of
goods [e.g., Aziz et al., 2017]. Also, it would be interesting
to obtain analogues of procedures such as sequential alloca-
tion and round-robin that respect the connectivity constraints
and still produce desirable allocations. Finally, we may con-
sider placing constraints on the ‘shapes’ of players’ pieces,
e.g., by requiring that the size of each piece is large relative
to its diameter; similar ideas have been recently explored by
[Segal-Halevi et al., 2015] for the land division problem.
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