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Abstract
We define a new class of low-communication vot-
ing rules, tailored for contexts with few voters and
possibly many candidates. These rules are defined
by a predefined sequence of voters: at each stage,
the designated voter eliminates a candidate, and the
last remaining candidate wins. We study determin-
istic and randomized versions of these rules. We
first investigate their axiomatic properties. Then
we focus on a subfamily of rules defined by “non-
interleaved” sequences, for which we seek a se-
quence that best approximates the Borda rule un-
der Impartial Culture. Finally, we apply our rules
to randomly generated data.

1 Introduction
The communication burden on the agents in collective de-
cision making is often an obstacle to implementing other-
wise good voting rules, perhaps even more than computa-
tional complexity: while individuals agree to wait a few hours
before knowing the outcome of a collective decision mech-
anism, they will probably not wish to spend a significant
amount of time and energy reporting their preferences, es-
pecially in low-stake decision contexts, like choosing a col-
lective item to buy, a place for a group dinner, or a film to
watch together. In such contexts, the number of alternatives
may be high, while the number of agents can be small: it is
reasonable, for instance, to consider a group of four individu-
als choosing a restaurant out of a dozen. The type of problem
we have in mind is the design of mechanisms that could be
implemented on smartphone applications, and used by agents
quickly and with a very low cognitive effort.

A number of works, which we review below, addressed
the issue of designing low-communication protocols for com-
puting the exact or approximate outcome of common voting
rules. We follow a different path, by designing new rules
that are specifically tailored for coming with low communi-
cation protocols. The family of rules we study in this paper
concerns contexts where the number of candidates is larger
(possibly much larger) than the number of voters, and works
by having, at each step, a designated agent eliminating one of
the remaining alternatives, until only one alternative remains.
We believe that individuals would easily use such rules in

low-stake contexts, where simplicity and rapidity of choice
matters more than fairness and optimality; as a matter of fact,
such rules have been observed in real-life settings by some of
us. Although this paper focuses on this precise context, our
rules belong to a much larger set, where the number of voters
and alternatives can be arbitrary small or large.1

Related work can be decomposed into three groups (for
a good overview of communication issues in voting see
Boutilier and Rosenschein [2015]):
Class 1: Defining low-communication protocols for com-
puting voting rules. The communication complexity of vot-
ing rules was initiated by Conitzer and Sandholm [2005]:
the goal is to identify, for a given rule, lower and upper
bounds on the worst-case number of bits to be exchanged so
that the outcome can be determined; the upper bound comes
with concrete protocols. A different set of results, based on
query complexity, identifies the worst-case minimal number
of queries to determine the winner of some tournament so-
lution, where a query consists in asking whether some edge
exists in the majority graph [Balasubramanian et al., 1997;
Procaccia, 2008; Dey, 2017]. Finally, Kalech et al. [2011]
study an interactive protocol where at each round, each voter
gives her k-th best alternative; the protocol ends when there
is enough information to determine the true winner.
Class 2: Defining low-communication protocols for approx-
imating a voting rule. Service and Adams [2012] study the
communication complexity of determining approximate win-
ners for rules based on scores (where approximation is rel-
ative to the ratio between the score of the outcome and the
score of the true winner). Queries in their protocols gener-
ally consist in asking voters whether the rank of a candidate
lies in a given interval or not. Another series of work that
can be located in Class 2 are top-k approximations of voting
rules: voters report only their top k alternatives, and a winner
is computed from this partial information [Dery et al., 2014;
Filmus and Oren, 2014; Lu and Boutilier, 2011].
Class 3: Designing new rules based on low-communication

1For instance, in a context with less alternatives than voters, the
designated agent can veto an alternative, and an aternative is elimi-
nated once it obtains a given number of vetos; or else, the designated
agent can support an alternative, and the winner is declared once an
alternative obtains enough support. Although we have these exten-
sions in mind, we won’t discuss them again in the paper.



protocols.2 Goel and Lee [2012] define a randomized urn-
based voting rule where at each stage, a triple of voters
(i1, i2, i3) is selected randomly; each of them gives her pre-
ferred alternative xij , and votes between the other two. If
there is a three-way tie, the three voters disappear from
the election, otherwise the losing voters are replaced with
“copies” of the winning voter. The process is iterated until
there remains only one voter (which is guaranteed to eventu-
ally occur for a reason we will not explain here). The rule has
a low average communication complexity and, when applied
to a Euclidean single-peaked profile, achieves a good approx-
imation of the Condorcet winner with high probability. With
the random pairs rule [Hansen, 2016], each voter is presented
a small number of randomly chosen pairs of alternatives and
chooses between them; the alternative winning most pairwise
contests is declared the winner. Although the rule can vi-
olate Pareto-efficiency and even unanimity, such paradoxes
are rare in practice; and the required communication is low.
Gross et al. (2017) define a low-communication randomized
rule: voters are selected randomly and asked to report their
preferred alternative; as soon as there is an alternative named
by two voters, it is declared the winner. The worst-case com-
munication complexity O(m logm) is the same as for our
rules, and the principle definitely has some similarity with
ours. However, their mechanism is based only on top-ranked
alternatives, while ours uses information “inside” the voters’
rankings; related to that, their mechanism is not applicable to
settings with few voters, because of the risk that no alternative
is top-ranked more than once.

The paper is organized as follows. In Section 2 we define
two families of sequential elimination rules. In the first one,
the rules are resolute but non-anonymous, as the elimination
sequence is fixed. In the second one, the rules are randomized
and anonymous: an elimination pattern is fixed, with virtual
voters being placeholders, and actual voters are assigned to
placeholders with a uniform probability. In Section 3 we con-
duct an axiomatic study of our rules: they are shown to satisfy
Pareto-efficiency, monotonicity, and a weakening of indepen-
dence of losing alternatives. While the set of satisfied proper-
ties may seem light, we emphasize that their communication
complexity is extremely low. In Section 4 we compare differ-
ent elimination sequences according to the expected Borda
score of the outcome, where profiles follow the impartial cul-
ture distribution. While we do not have a closed-form formula
for identifying the best sequence in the general case, we are
able to do it for a family of sequences that are especially inter-
esting and convenient: non-interleaved sequences, in which
the occurrences of each agent in the sequence are contiguous.
In Section 5 we study the performance of elimination-based
rules on randomly generated data. In Section 6 we suggest
further research directions.

2 Elimination-based Voting Rules
Let N = {1, . . . , n} be a set of voters and C = {c1, . . . , cm}
a set of candidates. A n-voter preference profile over C is a

2In some sense, class 2 can be interpreted as a subset of class 3,
if we see the approximations of voting rules as voting rules per se.

collection of votes V = (V1, . . . , Vn) where each Vi is a lin-
ear order over C. L(C) is the set of all linears orders over C.
∆(C) is the set of all probability distributions over C. For
c ∈ C, r(c, Vi) denotes the rank of c in Vi (from 1 for the
best candidate to m for the worst one). The Borda score
of c for V is SB(c, V ) =

∑n
i=1m − r(c, Vi). Also, we de-

fine the contribution of voter Vi to the Borda score of c as
SB(c, Vi) = m − r(c, Vi). A resolute voting rule is a func-
tion fromL(C)n toC. A randomized voting rule is a function
from L(C)n to ∆(C). The Borda rule is the resolute rule that
outputs the candidate maximizing SB(., V ) (using a prede-
fined priority relation over C in case of a tie).

An elimination sequence for n voters andm candidates is a
sequence π =

(
π(1), . . . , π(m− 1)

)
in Nm−1. Given π, the

deterministic sequential elimination rule (SER) Fπ is defined
recursively as follows: for each profile V ,

1. C(0) = C;

2. For each i = 1, . . . ,m−1,C(i) = C(i−1)\{last(C(i−
1), Vπ(i))}, where last(C(i − 1), Vπ(i)) is the least pre-
ferred candidate in C(i− 1) according to Vπ(i).

3. Output the single element in C(m).

Example 1 Let n = 3, m = 5, V = (abcde, edcba, debca)
and π = (1, 2, 3, 1). Then C(1) = {a, b, c, d} since 1 elimi-
nates e, C(2) = {b, c, d} since 2 eliminates a, C(3) = {b, d}
since 3 eliminates c, and finally, C(4) = {b} and Fπ(V ) = b.

Given an elimination sequence π and a permutation σ

on N , the randomized SER F̂π induced by the pattern π out-
puts each candidate c with probability 1

n! |{σ | Fσ◦π(V ) =
c}|. Intuitively, the indices in π are not actual voters but
placeholders; the randomly chosen permutation σ then as-
signs actual voters to placeholders.

Example 1 (continued) Let us apply the randomized pattern
π = (1, 2, 3, 1) to P . Here are the six possible permutations
together with the associated winner: 123 7→ 123 : b; 123 7→
132 : c; 123 7→ 213 : d; 123 7→ 231 : d; 123 7→ 312 : d;
123 7→ 321 : d. Henceforth, F̂π(P ) = 〈b : 1

6 , c : 1
6 , d : 2

3 〉.

It is worth noticing that if π = (1, . . . , 1) then F̂π coincides
with random dictatorship.

There are two ways of viewing F̂π , yielding two ways of
computing the winner. In the offline view, voters report their
preferences without knowing which permutation σ will be
chosen; in the online view, the permutation σ is randomly
chosen first, and voters then proceed to the elimination proto-
col as in the resolute case. Not only the offline computation
of F̂π requires a complete elicitation of the preferences, but it
is also hard, as the following result shows.

Proposition 1 Suppose m > n, and let π =
(1, 2, . . . , n, n, n . . .). Checking if a candidate w has a
non-zero probability of winning with F̂π is NP-complete.

Proof sketch. Hardness is proven by the following reduction
from 3SAT. Let x1, . . . , xp be the propositional variables,
and let c1, . . . , cq the clauses, with ci = li,1 ∨ li,2 ∨ li,3,
where each li,j ∈ {x1 . . . xp, x̄1 . . . x̄p} is a literal. The re-
duction is as follows. We build m = 3p+ 3q + 3 candidates:



{xi, x̄i, zi | 1 ≤ i ≤ p} ∪ {yi, ȳi, ci | 1 ≤ i ≤ q} ∪ {a, b, w}.
We build a profile with n = 2p + 3q + 1 voters. Because
we are only concerned about the winning probability of w,
in each vote Vi, the order of the candidates ranked above w
does not matter, so we specify only the order of candidates
below w. For each vote Vi, let below(Vi, w) be the projec-
tion of Vi on candidates ranked below w in Vi. For example,
below (ebdwfa,w) = fa. The profile V is built as follows:
• For each variable xj , we have two voters Vxj and Vx̄j such
that below(Vxj , w) = xjzj and below(Vx̄j , w) = x̄jzj .
• For each clause ci = li,1 ∨ li,2 ∨ li,3, we have three vot-
ers Vi,1, Vi,2, Vi,3 such that below(Vi,j , w) = cili,jy

′
iyi for

j ∈ {1, 2, 3}.
• We have a last voter Vlast such that below(Vlast, w) =
x1x̄1 . . . xpx̄pba.

The picking sequence is π = (1, 2, . . . n, n, . . . n). w has
a non-zero winning probability if and only if there exists a
permutation σ applied to π such that during the m − 1 first
picking steps, all candidates except w are removed. We can
verify that the set of clauses is satisfiable if and only if w has
a non-zero winning probability. �

This hardness result has little practical impact: the winner
can still be computed efficiently by using the online protocol.

We say that i appears in π if there is a k such that π(k) =
i. Let nv(π) be the number of voters who appear in π. An
elimination sequence π is non-interleaved if and only if for
each i ∈ N , either i does not appear in π or there are two
indices start(i) and end(i) such that for all 0 ≤ k ≤ m −
1, π(k) = i if and only if start(i) ≤ k ≤ end(i). Given
a non-interleaved sequence π, let ρ be the function yielding
the j-th voter participating in the sequence. The signature of
an non-interleaved sequence is the vector π̃ = (end(ρ(i)) −
start(ρ(i)) + 1) | i = 1, . . . ,nv(π)). Elimination sequences
where voters appear in increasing order are monotonic. For
instance, with m = 7 and n = 4, π = (1, 1, 1, 1, 2, 3) is
monotonic and yields the signature π̃ = (4, 1, 1). Without
loss of generality, a non-interleaved pattern sequence for a
randomized SER can be assumed to be monotonic. Random
dictatorship corresponds to the pattern sequence (1, . . . , 1)
with signature π̃ = (m− 1).

Observation 1 The deterministic communication complexity
of any resolute elimination rule is in O(m log(m)).

Indeed, at each step i, voter π(i) just has to indicate
the candidate she wants to eliminate, which gives (m −
1)dlog(m)e as an immediate upper bound. The exact up-
per bound is in fact less than that:

∑m
j=2dlog(j)e, because

the voter m − j + 1 has to indicate a candidate among the
j remaining candidates. This bound is for the set of all se-
quences; for specific sequences the communication complex-
ity may be lower, especially for non-interleaved sequences.
For instance, for the non-interleaved sequence with the signa-
ture (4, 2), the first voter needs to communicate dlog

(
7
4

)
e = 6

bits, and the second voter dlog
(

3
2

)
e = 2 bits: 8 bits in total,

whereas
∑m
j=2dlog(j)e = 14. The minimum is of course

obtained for dictatorship.

We now prove that for some sequences, the lower bound

matches the upper bound. Consider the family of sequences
πsimple = (1, . . . ,m− 1) with n = m− 1:

Proposition 2 The communication complexity of Fπsimple
is

in Ω(m logm).

Proof. Let S(C) be the set of permutations of C. Con-
sider the set of profiles F = {V σ | σ ∈ S(C)}, where
V σ = (V σ1 , . . . , V

σ
n ), and V σi is a vote that ranks xσ(i) in the

last position and xm in the second last position (the rest of the
vote does not matter). We claim thatF is a fooling set for Fπ ,
that is, for each V, V ′ ∈ F , (a) F (V ) = F (V ′), and (b) there
is a mixture (VI , V

′
−I) of V and V ′ (coinciding with V on I

and with V ′ on N \ I) such that Fπ(VI , V
′
−I) 6= F (V ). We

first verify that for every σ ∈ S(C) we have Fπ(V σ) = xm:
indeed, at each step i = 1, . . . ,m − 1, voter i eliminates her
least alternative xσ(i), and the remaining one is xm. Now, we
claim that if V σ and V τ are two distinct profiles in F , then
there is a mixture V ′ of V σ and V τ such that Fπ(V ′) 6= xm.
Indeed, if σ 6= τ then there exist i, j such that i 6= j and
σ(i) = τ(j). Let V ′ = (V σ1 , . . . , V

σ
j−1, V

τ
j , V

σ
j+1, . . . , V

σ
n ).

Because V ′i and V ′j are equal and rank xi last and xm
second last, the first one whose turn comes will elim-
inate xi, and the second one will eliminate xm; thus,
Fπ(V ′) 6= xm. Therefore, F is a fooling set for Fπ ,
and since its cardinality is (m − 1)!, the communication
complexity of Fπ is in Ω(log(m−1)!), i.e, in Ω(m logm). �

For randomized SERs with the online view, the commu-
nication complexity is exactly the same, if we do not count
the communication bits sent by the random number genera-
tor to communicate to each agent her role in the sequence —
otherwise we have to add O(n log(n)) bits.

3 Axiomatic Properties
We now show that sequential elimination rules enjoy some of
the most desirable properties of voting rules.

Clearly, any SER (whether resolute or randomized) is neu-
tral: it treats all candidates symmetrically. No resolute SER
is anonymous: it does not treat voters symmetrically; how-
ever, any randomized SER is ex-ante anonymous: voters are
symmetrical before their assignment to placeholders.

Now, consider Pareto-efficiency: a resolute rule is Pareto-
efficient if it always elects a Pareto-optimal candidate, where
x is Pareto-optimal if no y 6= x is preferred to x by all voters.
A randomized rule F̂ is ex-post Pareto-efficient if for any V ,
the support of F̂ (V ) contains only Pareto-optimal candidates.

Observation 2 A candidate x is Pareto-optimal in profile V
if and only if there exists a sequence π such that Fπ(V ) = x.

Proof. Left to right: the sequence π is constructed by
choosing at each step a voter who does not rank x last among
the remaining candidates. If it was not possible at some step
other than the final step, then x would be ranked last in all
votes, and thus would be Pareto-dominated. Right to left: if
x is Pareto-dominated by y, then whatever π, y will never be
eliminated before x, therefore Fπ(V ) 6= x. �

This observation leads to the following Proposition.



Proposition 3 For any π, Fπ is Pareto-efficient and F̂π is ex-
post Pareto efficient.

All rules Fπ and F̂π satisfy unanimity: if there is a unani-
mously preferred candidate, then she is elected (with proba-
bility 1 for randomized rules). We now consider monotonic-
ity. An x-improvement of a profile V is a profile V ′ identical
to V except for one vote V ′i , for which x moves one position
upward, everything else being unchanged. A resolute rule
F is monotonic if for any V with F (V ) = x, and any x-
improvement V ′ of V , F (V ′) = x. A randomized rule F̂ is
monotonic if with the same assumptions as above, the proba-
bility that x wins cannot decrease when changing V into V ′.

Proposition 4 For any π, Fπ and F̂π are monotonic.

Proof. For the resolute case, this is because if some candidate
y is eliminated for V , then for V ′ it must be eliminated either
at the same stage as in V or before. The application of this
result to all permutations σ yields the result for F̂π . �

We also mention an interesting property, which is a relaxation
of Kelly’s independence of losing alternatives [Kelly, 1978].
Let up(x, Vi) = {y | y �Vi x} and down(x, Vi) = {y |
x �Vi y}. Given two votes Vi and V ′i , we write Vi ∼x V ′i if
up(V ′i , x) = up(V ′i , x) and for each y, z ∈ down(Vi, x) we
have y �Vi z if and only if y �V ′i z. Then, all rules Fπ satisfy
independence of reshuffling above the winner: for all profiles
V , V ′ such that Vi ∼Fπ(V ) V

′
i for every i = 1, . . . , n, we

have Fπ(V ′) = Fπ(V ). What makes this property interesting
is that it is rather strong, as very few common rules satisfy it
(one of the few exceptions being Antiplurality – a.k.a Veto).

For lack of space, we only briefly discuss properties that
are not satisfied, or satisfied only in specific cases. We sum-
marize all results without proof: (1) if n ≥ 3 andm ≥ 2, then
no SER is Condorcet-consistent; (2) a resolute (resp. ran-
domized) SER is strategyproof if and only if it is a dictator-
ship (resp. random dictatorship); (3) A family of randomized
SERs, defined for any number of voters and candidates, satis-
fies SD-participation [Brandl et al., 2015] if and only if it is a
random dictatorship for any number of voters and candidates.

4 Borda-optimal Non-interleaved Elimination
Sequences

Communication complexity is obviously not the only crite-
rion we may use to choose an elimination sequence (as it
would lead us to choose random dictatorship). A way of eval-
uating the quality of an elimination sequence can be its prox-
imity to a known voting rule, and here we choose the Borda
rule. Although this is not the only possible choice, still, it is
an natural point to start with, since the Borda score has a clear
social welfare interpretation that goes beyond seeing Borda as
a voting rule (see e.g. d’Aspremont and Gevers [2002]).

For the sake of simplicity, in this section we restrict to non-
interleaved elimination sequences. Such a restriction is often
natural and desirable: for example, in an online voting setting,
voters might want to connect only once to the voting website.

A sequence π will be evaluated by the expected Borda
score of the winner Fπ(V ), where profile V is drawn from

a uniform random distribution. We write IC(n,m) the uni-
form distribution (often called Impartial Culture, or IC) over
profiles of n voters and m candidates. First, we estimate the
value of EV∼IC(n,m) [SB (Fπ(V ), V )] for a given π. Then,
we search for the sequence yielding the best Borda approxi-
mation, i.e. maximizing this expected Borda score.

Because we work with IC, all non-interleaved elimination
sequences sharing the same signature π̃ yield the same ex-
pected Borda score. Therefore, without loss of generality, we
restrict our study to monotonic elimination sequences. The
following proposition gives us a closed formula to compute
the expected Borda score, given a non-interleaved elimina-
tion sequence.
Proposition 5 Assume the profile V is drawn from
IC(n,m). Let π be a monotonic non-interleaved elim-
ination sequence. Let li = m + 1 −

∑i
j=1 π̃(j) for

i = 1, . . . n and l0 = m+ 1. Then, the expected contribution
of voter Vi to the Borda score of the winner, as well as the
total expected Borda score of the winner are:

EV∼IC(n,m) [SB (Fπ(V ), Vi)] = m− li
li−1

(
m+ 1

2

)
EV∼IC(n,m) [SB (Fπ(V ), V )] = mn−

(
m+ 1

2

) n∑
i=1

li
li−1

Proof. We focus on voter i. If c wins, the contribution of i
to its total Borda score is SB(c, Vi). Let ki be the number of
candidates remaining before i’s turn: ki = m −

∑i−1
j=1 π̃(j).

Let X(1) . . . X(ki) be the Borda scores with respect to i of
each of these ki remaining candidates, sorted by increasing
scores (so m − X(ki) is the rank of i’s preferred candidate
among all candidates still available). Because Vi is drawn
from IC, the set

{
X(1), . . . , X(ki)

}
is uniformly distributed

among all ki-subsets over {0, . . . ,m − 1}. Clearly, i will
remove the π̃(i) candidates yielding the lowest Borda scores
SB(., Vi). These Borda scores are X(1) . . . X(π̃(i)). Also, the
final winner will be uniformly distributed among the remain-
ing candidates (because of IC). So the expected Borda score
of the final winner will be Ej∼{π̃(ki)+1,...,ki}

[
X(j)

]
.

It is a standard result from order statistics that when draw-
ing a uniform subset of k elements from {1, . . . ,m}, and then
ordering them increasingly, the expected value of the ith ele-
ment is im+1

k+1 (see e.g. Arnold et al. [1992, page 56]). Since
our Borda scores are drawn from {0, . . . ,m− 1}, we get
E
[
X(i)

]
= im+1

ki+1 − 1. For j ≤ ki, 1 + Ei∼{j,...,ki}
[
X(i)

]
=

E
[

1
ki−j+1

∑k
i=j X(i)

]
= (j+ki)(ki−j+1)(m+1)

2(ki−j+1)(ki+1) . Finally, 1 +

Ej∼{π̃(ki)+1,...,ki}
[
X(j)

]
= (π̃(ki)+1+ki)(ki−π̃(ki))(m+1)

2(k−π̃(ki))(ki+1) =
(π̃(ki)+1+ki)(m+1)

2(ki+1) . Replacing ki + 1 by li−1, we get

Ej∼{π̃(ki)+1,...,ki}
[
X(j)

]
= (2li−1−li)(m+1)

2li−1
− 1 =

m− li
li−1

(
m+1

2

)
. The result follows. �

Now, we look for an optimal sequence, i.e. maximizing the
expected total Borda score. We need to minimize:

E =

n∑
i=1

li
li−1

,



with the constraints that l is a non-increasing sequence of in-
tegers, l0 = m+ 1 and ln = 2.

4.1 Exact Solution with Real Numbers
To forge the intuition, let us relax the assumptions by allow-
ing the (li) to be real numbers. For 0 < i < n, a partial
derivation of E with respect to li leads to li−1

li
= li

li+1
, hence

l must be geometric. We deduce:

li = (m+ 1)

(
2

m+ 1

) i
n

.

When the above solution consists of integers, it can be im-
plemented. For example, consider n = 3 and m = 15. Then
l = (16, 8, 4, 2). Remarking that the signature π̃ is computed
as the differences between consecutive terms in l, we have
π̃ = (8, 4, 2). More generally, if there exists some integer k
such that m = 2kn − 1, then π̃(i) = 2(k − 1)kn−i.

If the Borda score is viewed as a measure of social welfare,
then among the non-interleaved SERs, the solution above is
optimal not only for utilitarian, but also for egalitarian so-
cial welfare (ex-ante), since all voters have the same expected
utility.

4.2 Properties of the Optimal Sequence
Let us bring back the constraint that (li) are integers (still
with monotonic non-interleaved elimination sequences).

Proposition 6 If m− 1 ≤ n, then the only optimal sequence
has signature π̃ = (1, . . . , 1). If m − 1 ≥ n, then for any
optimal sequence, nv(π) = n, i.e. all voters participate.

Proof. Let π be a sequence. Assume that a voter eliminates
more than one candidate and that another voter eliminates
none. We will then prove that π is not optimal. This im-
mediately implies the two assertions of the proposition.

Let i be the last voter such that π̃(i) > 1 and k = nv(π)+1
the first non-participating voter. For j = i+ 1, . . . , k− 1, we
have π̃(j) = 1. It is easy to check that li = k − i+ 1.

Consider the sequence π′ whose signature is identical to
π̃, except that π̃′(i) = π̃(i) − 1 and π̃′(k) = 1. Denoting
E′ the counterpart of E for sequence π′, we have: E′ −E =

1
k−i+1+π̃(i) +

∑k−i+1
j=3

1
j(j+1)−

1
3 = 1

k−i+1+π̃(i)−
1

k−i+2 < 0

Hence π′ is strictly better than π. �

In the following, we often use the fact that if m − 1 ≥ n,
then all voters participate, hence l is strictly decreasing.

Proposition 7 In an optimal sequence, we have

li(li − 1)

li−1
≤ li+1 ≤

li(li + 1)

li−1
, for all i ≤ n− 1. (1)

Proof. For m − 1 ≤ n, this follows from Proposition 6. As-
sume m − 1 > n. Intuitively, we examine a “discrete partial
derivative” of E with respect to li. Let ε ∈ {−1,+1} and
π′ a sequence whose signature is identical to π̃, except that
π̃′(i) = π̃(i) + ε and π̃′(i+ 1) = π̃(i+ 1)− ε. Comparing E
andE′, by optimality of π, we have li

li−1
+ li+1

li
≤ li−ε

li−1
+ li+1

li−ε .

Some basic algebra leads to εli+1 ≥ li(εli−1)
li−1

. Since it is true

for ε ∈ {−1,+1}, the result follows. �

Note that the difference between the lower and upper bounds
in Equation (1) is 2li

li−1
< 2, hence there are at most two inte-

gers in that interval. We will use this fact for our algorithm.

Proposition 8 The signature π̃ of any optimal sequence is
non-increasing.

Proof. Since Proposition 6 proves this assertion for m− 1 ≤
n, we assume m − 1 > n. Let i ∈ {1, . . . , n − 1}. Some
rewriting of (1) leads to:(

π̃(i)− 1
) li
li−1

≤ π̃(i+ 1) ≤
(
π̃(i) + 1

) li
li−1

. (2)

Since li < li−1, the right inequality implies
π̃(i+ 1) < π̃(i) + 1, hence π̃(i+ 1) ≤ π̃(i). �

Finally, we state (omitting its proof due to lack of space)
this last property of optimal non-interleaved sequences.

Proposition 9 The signature π̃ of any optimal sequence is
approximately convex, in the sense that:

π̃(i) ≤ π̃(i− 1) + π̃(i+ 1) + 1

2
, for any i = 2, . . . , n− 1.

For example, for n = 4 and m = 7, the optimal sequence
is π̃ = (2, 2, 1, 1) (as shown by our algorithm, see below). It
is not convex, because π̃(2) = 2 is strictly greater than the
average of its two adjacent terms π̃(1) = 2 and π̃(3) = 1.
But it is approximately convex. This example shows that in
the above inequality, the “error constant” 1

2 is tight.

4.3 Computing Borda-optimal Sequences for IC
We present the sketch of an algorithm in O(nm) that com-
putes the signature π̃ of an optimal non-interleaved sequence
under IC. We will build two tables predecessor and penalty,
whose rows are indexed from 0 to n and columns from 2 tom,
with the following interpretations. predecessor(i− 1, j) = k
means that in an optimal sequence, if li = j, then li−1 = k.
penalty(i − 1, j) = p means that in an optimal sequence, if
li = j, then l1

l0
+ . . .+ li

li−1
= p. For any j, predecessor(0, j)

is initialized tom+1 and penalty(0, j) is initialized to j
m+1 .

Then, for each i from 1 to n − 1, we establish partial opti-
mal sequences until li+1. To that end, each possible li yields
two possible values of li+1 thanks to Proposition 7. Since
several values of li can lead to the same value of li+1, only
the one with lowest penalty is kept as a valid predecessor
of li+1, along with the corresponding penalty. At the end
of the algorithm, tables predecessor and penalty are built.
We have then ln = 2 and for any i ∈ {1, . . . , n}, li−1 =
predecessor(i− 1, li). Finally, π̃ = (l0 − l1, . . . , ln − ln−1).

To conclude this section, we comment on two other ideas
of algorithms: 1) explore only the rounded values of the real
solution for sequence l (Section 4.1); or 2) use an integer
adaptation of a gradient descent algorithm, until all condi-
tions from Equation (1) are met (i.e. until a local optimum
is reached, where incrementing or decrementing any li is not
profitable). However, consider n = 3 and m = 40. The real



optimum is (41.00, 14.98, 5.47, 2.00). But (as our algorithm
shows) the integer optimum is (41, 16, 6, 2), which does not
consist in rounded values of the real solution: this excludes
idea 1. Besides, another sequence, (41, 14, 5, 2), also meets
all conditions from Equation (1): it is a local optimum, but
not the global one, leaving little hope for idea 2.

5 Experimental Study
Now we show to which extent sequential elimination rules
provide a good Borda score approximation in practice. To
this end we have carried out two sets of experiments. In both
sets we have considered random instances drawn from five
particular cultures: Impartial Culture (IC), Mallows with a
dispersion parameter ϕ = 0.1 (M0.1), Mallows with ϕ = 0.5
(M0.5), Single-Peaked Impartial Culture (SPIC), and Single-
Peaked with Uniform Peak (SPUP) [Conitzer, 2007].

In the first experiment, the number of voters n varies from
2 to 10 and the number of candidates is 2n+1 − 1. Recall
that under IC, optimal non-interleaved sequences in this set-
ting are geometric sequences (Section 4.1). For each (n,m)
and each culture, we focused on three different sequences:
(i) geometric (e.g. π̃ = (8, 4, 2)), (ii) round-robin (e.g.
π = (1, 2, 3, 1, 2, 3, ...)) and (iii) random (single) dictator
(e.g. π = (1, 1, 1, ...)). We have computed for each one the
mean value of the differential ratio SB(Fπ(V ),V )−min(SB(.,V ))

max(SB(.,V ))−min(SB(.,V ))

over a sample of 10000 profiles generated for each (n,m) and
culture. The results are shown in Figure 1 (the result for M0.1

is not shown but gives an even better approximation ratio than
M0.5 for all three sequences).
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Figure 1: Borda approximation quality of three kinds of se-
quences for IC, M0.5, SPIC, SPUP (from top to bottom).

In the second experiment, the number of voters n varies
from 2 to 6 and the number of candidatesm from n+1 to 2n.
For each (n,m) and each culture, we used an exhaustive
search algorithm over the space of all sequences to find the
sequence yielding the best expected Borda score (estimated
from a sample of 10000 profiles). For all settings, these best
sequences, their differential ratios and the standard-deviation
of this ratio (both in percentage) are shown in Table 1.

Culture n m opt. sequence ratio

IC 4 8 (1, 2, 2, 3, 1, 3, 4) 90.5%± 0.08
IC 5 10 (1, 1, 2, 3, 2, 1, 3, 4, 5) 88.5%± 0.1

M0.1 5 10 (1, 2, 3, 2, 2, 2, 2, 1, 4) 99.5%± 0.005
SPIC 5 10 (1, 2, 3, 1, 1, 4, 2, 3, 5) 98.2%± 0.01
SPUP 5 10 (1, 2, 3, 4, 5, 1, 2, 4, 3) 95.1%± 0.04

Table 1: best sequences, their ratio and standard-deviation

What is remarkable is that the estimated expected value for
the differential ratio is almost always over 90% for round-
robin, geometric sequences and the optimal sequence and for
all the cultures (IC being the worst), and is even close to 100%
for more correlated profiles like the Mallows ones. Thus,
although the optimal sequence is interleaved, the best non-
interleaved sequence (geometric) performs almost as well.
Even if it differs from the optimal sequence, round-robin
even gives a better approximation of it than the best non-
interleaved sequence. Unsurprisingly, random dictatorship
performs quite badly in comparison.

Finally, we tested our approach on the real Sushi dataset
from PrefLib [Mattei and Walsh, 2013]. To obtain instances
with more candidates than voters, we sampled 10000 pro-
files of 5 voters from the whole set (in this dataset, m =
10) and as before computed the best sequence according
to the average differential ratio. The sequence obtained
is (1, 1, 1, 2, 2, 2, 3, 4, 5), and gives a differential ratio of
93.035%, showing that the method may perform well on re-
alistic datasets as well.

6 Conclusion

Sequential elimination rules have a low communication com-
plexity, while enjoying several important properties. We have
defined a framework for identifying optimal sequences for a
quality measure, the Borda score; a further research direction
consists in identifying optimal sequences for other measures.
This work is a first study, in a setting with few voters; we
plan to investigate similar low-communication rules, consist-
ing of a sequence of steps where a designated voter vetoes or
supports an alternative, applicable in different settings. More-
over, a similar family of protocols in fair division, picking se-
quences, have also been studied under the social welfare point
of view [Bouveret and Lang, 2011; Kalinowski et al., 2013;
Aziz et al., 2016]. Now, picking sequences can be viewed
to some extent as elimination protocols, as each agent, when
picking an item, eliminates a set of possible assignments; it is
worth exploring this connection further. Finally, as we have
seen, this family of voting rules is of course not strategyproof.
In this paper, we have left strategical issues aside, but it would
be a crucial topic for future research.
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