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Abstract We investigate five different fairness criteria in a simple model of fair resource
allocation of indivisible goods based on additive preferences. We show how these criteria
are connected to each other, forming an ordered scale that can be used to characterize how
conflicting the agents’ preferences are: for a given instance of a resource allocation problem,
the less conflicting the agents’ preferences are, the more demanding criterion this instance
is able to satisfy, and the more satisfactory the allocation can be. We analyze the computa-
tional properties of the five criteria, give some experimental results about them, and further
investigate a slightly richer model with k-additive preferences.
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1 Introduction

The problem of fairly allocating some resources to a set of economically motivated agents is
an important and common problem. Fair division of indivisible goods in particular, on which
we focus in this paper, arises in a wide range of real-world applications, including auctions,
divorce settlements, airport traffic management, spatial resource allocation (Lemaı̂tre et al
1999), fair scheduling, allocation of tasks to workers, articles to reviewers, courses to stu-
dents (Othman et al 2010).

In this paper, we focus on fair division of indivisible goods. In this setting, a finite set of
indivisible objects has to be allocated to a finite set of agents. We assume that the process is
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centralized, that is, a supposedly benevolent arbitrator is in charge of allocating the objects
to the agents according to their revealed preferences. Moreover, we rule out the use of any
divisible resource (such as money) as a mean of compensation for the agents: in other words,
there can be no monetary transfers between the agents and the arbitrator, nor between the
agents themselves, during the allocation process or afterwards.

An important point in this context is how agents express their preferences. In a central-
ized allocation process, the agents have first to communicate and hence explicitly describe
their preferences over the objects. Two main approaches are appropriate for that. The first
one rests on a purely ordinal expression of preferences, such as a weak (partial or total) or-
der. The second one exploits a numerical expression of preferences taking the form of utility
functions. This article, for convenience, is based on the second approach, but many of the
results presented here could be transposed in the first, purely ordinal one.

Another important point about preferences is whether the agents should be allowed to
express some preferential dependencies between goods or not. In this paper, we assume
that the agents have additive preferences (except in Section 8 where we consider a more
general model). This model may seem restrictive, but it offers a natural trade-off between
simplicity and expressiveness. Moreover, it has been largely investigated in the literature
about fair division (see for example Demko and Hill 1988; Beviá 1998; Brams and Taylor
2000; Herreiner and Puppe 2002; Brams et al 2004; Lipton et al 2004; Bansal and Sviridenko
2006; Asadpour and Saberi 2007; de Keijzer et al 2009; Markakis and Psomas 2011).

The last critical point about fair division is how fairness should be defined and how
it can be evaluated. Once again two main options are available. The first one consists of
defining a collective utility function (CUF) aggregating individual agents’ utilities. If the
CUF is well chosen, its outcome when applied to individual utilities reflects the fairness
(and possibly other desirable properties) of a given allocation. The arbitrator just looks for
an allocation maximizing this CUF. The second option consists of defining, by means of a
Boolean (logical) criterion, what is considered as fair. This is the approach followed by most
works in fair division of divisible goods – cake-cutting – or by Lipton et al (2004) among
others for envy-freeness in the context of indivisible goods. This article explores mainly this
logical option.

While most papers in fair division focus on a specific criterion, here we consider five
of them and investigate their connection to each other. Four of these criteria are classical
or already known, namely: max-min fair-share (MFS), proportional fair-share (PFS), envy-
freeness (EF) and competitive equilibrium from equal incomes (CEEI), and we introduce an
original one: min-max fair-share (mFS). All these criteria have a natural interpretation and
a very appealing quality: they do not need a common scale of agents’ utilities.1

Summing things up, we focus in this paper on a simple model of fair division, which is
based on the following assumptions:

– a set of indivisible objects must be distributed among a set of agents;
– agents have numerical additive preferences over the objects;
– the allocation process is centralized, that is, it is decided by a neutral arbitrator or com-

putation, taking into account only agents’ preferences, in a single step;
– no monetary transfer is possible between agents.

Our contribution Some instances of fair resource allocation problems are more conflicting
than others. When the number of objects is high and the agents prefer somewhat different

1 Whereas most CUF – except Nash – only make sense if the utilities are expressed on a common scale or
normalized.
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objects, a well-balanced allocation, satisfying all participants, is likely to be found. On the
contrary, when agents have similar preferences (they want more or less the same objects
with the same intensity), or when there are only a few objects to allocate, the sharing out
will for sure be conflicting.

Our main and original contribution is the following. Starting from the simple model of
fair division sketched above, we show that the five aforementioned criteria form a linear
scale of increasing requirements, that can be used to characterize formally the level of fair-
ness of a given allocation. The more demanding criterion an allocation is able to satisfy, the
fairer, more harmonious and less conflicting this allocation will be.

This scale of properties can be used to characterize not only an allocation, as said before,
but also a resource allocation problem instance: the non-conflicting degree of an instance can
be measured by the level of the most demanding criterion an allocation from this instance
can satisfy.

This article is structured as follows. Section 2 gives an overview of related work. Section
3 describes the model: fair division of indivisible objects under numerical additive prefer-
ences. The scale of five properties characterizing the fairness of an allocation, as well as
associated computational complexity results are exposed in Section 4. We go back to the
collective utility function approach in Section 5 to connect the important egalitarian CUF
to the scale of criteria. Section 6 is devoted to a bunch of interesting restricted cases. Some
experimental results on the scale of criteria are presented in Section 7. Extending the model
to k-additive preferences, Section 8 presents a quite different perspective. At the end, the
short Section 9 gathers the problems left open.

2 Related work

The problem of finding an allocation of indivisible goods to agents that satisfies a given
fairness criterion has already been considered in a lot of papers in the setting sketched above.
As mentioned in the introduction, several of these papers focus — like we do — on additive
numerical preferences. Unless otherwise mentioned, the works we cite in this related work
section concern additive preferences.

Among the five criteria that we consider, the most classical one is probably envy-freeness
(which originates from Foley (1967) in a more general setting). This criterion has been re-
investigated more recently, in particular by Lipton et al (2004). Among other results, they
prove the NP-completeness of the problem of existence of a complete (that is in which all
goods are allocated) envy-free allocation. They extend this result by relaxing envy-freeness
with several quantitative measures of envy, and give some polynomial-time approximation
algorithms, refining a previous result that was known from Dall’Aglio and Hill (2003) for a
more general model mixing divisible and indivisible resources. This work has been slightly
extended by de Keijzer et al (2009) who prove the ΣP

2 -completeness of the problem of de-
termining whether an envy-free and Pareto-efficient allocation exists. A very recent work by
Dickerson et al (2014) has further investigated envy-freeness by providing several theoreti-
cal and experimental results about the probability of existence of a complete and envy-free
allocation. In particular, they show analytically that under several assumptions on the prob-
ability distribution of the agents’ preferences, an envy-free allocation is unlikely to exist up
to a given threshold on the ratio between the number of goods and the number of agents,
and very likely to exist beyond. Experimental results show an interesting phenomenon of
phase-transition.



4 Sylvain Bouveret, Michel Lemaı̂tre

Another important fairness (and efficiency) concept, which is classical in microeco-
nomics, is the Competitive Equilibrium from Equal Incomes (CEEI). Roughly speaking, a
CEEI is obtained when the “supply” (the objects with some public prices) meets the “de-
mand” (the agents’ preferences for objects), each agent having a fixed budget to buy objects.
Fairness comes from the fact that prices and budgets are the same for all agents. This con-
cept has only been brought recently to computer science, in particular by Budish (2011). He
introduces approximate-CEEI, which is a parameterized approximation of the CEEI solu-
tion concept. He shows that under some assumption on the approximation parameters, an
approximate-CEEI always exists (namely, approximately fair, approximately efficient and
feasible).2 However, this result is based on a non-constructive proof. Othman et al (2010)
give a heuristic algorithm to compute approximate-CEEI, but this algorithm sometimes fails
to find the approximation guaranteed by Budish’s result. More recently, Othman et al (2014)
have proved that the problem of finding an approximate-CEEI in Budish’s sense is actually
intracatable (PPAD-complete). The approximate-CEEI solution is particularly interesting in
the context of fair course scheduling, in which objects — the seats in courses — are avail-
able in many copies (the seats of the same course). When applied to our model (described
in Section 3), where each object exists in a single copy, the approximate-CEEI solution is
much less interesting.

Budish (2011) also introduces an interesting solution concept, namely, the max-min fair-
share criterion (actually called Maximin Share Guarantee in Budish’s paper), on which part
of our work is based, and particularly well adapted to the fair allocation of indivisible goods.
Suppose an agent is allowed to divide the whole bundle as she wants, but cannot choose her
own share. The max-min fair-share of this agent is the maximum utility she can guarantee for
herself in this allocation game, and so can be considered as a lower bound of her utility.3 This
concept has been further studied by Procaccia and Wang (2014), who prove, among other
results, that there exists some instances where it is not possible to find any allocation giving
her max-min fair-share to all agents, which is a rather surprising result (see Section 4.1).
They also exhibit an approximation ratio of the max-min fair-share it is always possible to
satisfy, giving a constructive proof to this result.

The problem of maximizing the egalitarian collective utility function (hence trying to
find the maximal amount of absolute utility it is possible to guarantee to each agent) has been
investigated for years. Under additive numerical preferences, this problem is now known as
the Santa-Claus problem after Bansal and Sviridenko (2006) — but several other works
focus on this problem (mainly from the algorithmical point of view), under various denom-
inations (e.g Bezáková and Dani 2005; Asadpour and Saberi 2007). As quickly mentioned
in the introduction, we point out that there is an important difference between these works
and the criteria we investigate here: since the egalitarian approach is based upon utility max-
imization, it only makes sense if the individual utilities are expressed on a common scale
(such as money). This is not the case with our Boolean criteria: the agents may each have
their own utility scales.4 Nevertheless, it is worth considering the links between egalitarian-
ism and the approach based on criteria, as Brams et al (2000, 2004) and Brams and King

2 Actually, this result remains valid even with unrestricted combinatorial preferences.
3 Moulin (1990b), although in a continuous context (divisible goods), introduces a seminal idea of this

concept under a “though experiment” in which an agent considers the case of other agents having the same
preference as her, deriving from that experiment a lower bound of her utility.

4 Moreover, even if a common utility scale is used, an agent could manipulate the game to her advantage
by decreasing her utilities. A way to overcome this problem is to normalize utilities such that the whole set
of objects gives the same utility to each agent. This is known as the Kalai-Smorodinsky approach, see for
example Moulin (1988), page 67.
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(2005) do (although in a bit different model based on ordinal preferences), and as we further
investigate in Section 5.

Some papers have also paid attention to fair division with ordinal preferences, where
here separable preferences are the counterpart of additive numerical preferences. Although
a bit less related to our work, these papers are worth being mentioned because most of the
criteria we consider are purely ordinal, in the sense that they could be translated to ordinal
preferences. Brams et al (2000); Herreiner and Puppe (2002); Brams et al (2004); Brams
and King (2005) all consider a model where the agents express linear orders on objects,
with a dominance relation roughly based on separability and monotonicity. As mentioned
before, the authors study the links between envy-freeness and an ordinal version of egali-
tarianism. Bouveret et al (2010) work on a similar model, but focus on envy-freeness and
Pareto-efficiency, extended to deal with incomplete preferences. Aziz et al (2014) extend
these results by dealing with a more general model of preferences, whose semantics is
based on stochastic dominance. Although introducing several fairness criteria of different
strengths, the two latter works only focus on envy-freeness for the fairness aspects, and do
not investigate any of the other criteria that are dealt with in our paper.

As said above, Brams and King (2005) study the problem of allocating indivisible goods
with linear order preferences (strict ranking of objects). Among other contributions, they
consider “maximin allocations”, in which the lowest-ranked object that any agent receives is
as high as possible (an ordinal version of egalitarianism). Notably, they introduce the notion
of sequence of sincere choice that is reused in Section 6 (in a different way), in connection to
the efficiency property (Pareto-optimality) which is also considered in our Section 4 together
with envy-free and CEEI. However, they use an ordinal notion of domination (hence Pareto-
optimality) which is defined ordinally only over bundles of equal cardinality.

Some recent works focus on specialized versions of fair division of indivisible goods
without money. Xia (2014) studies the special case where objects are partitioned in cate-
gories, and each agent is required to get exactly or at least one item from each category.
Ferraioli et al (2014) focus on approximating solutions to a constrained version of the prob-
lem of finding the allocation that maximizes the egalitarian (min) utility (see our Section 5),
where each agent receives exactly the same number of objects.

Our contribution questions the role of similarities/dissimilarities in agents’ preferences.
In the fair allocation problem, similar preferences are conflicting and dissimilar ones are
more compatible. However it is exactly the opposite situation in the context of voting (sim-
ilar preferences are compatible and dissimilar ones are conflicting). The question of mea-
suring preference diversity in a group has been addressed, from a voting theoretic point of
view, by Hashemi and Endriss (2014), who propose several ways of measuring the diversity
in a preference profile and show a correlation between this measure and the existence of a
Condorcet winner for the given profile.

Finally, as quickly mentioned in the introduction, even if we focus on fair allocation of
indivisible goods, it has some indubitable connections with fair division of divisible goods,
also known as cake-cutting. Most works in this area focus on the development and analysis
of cake-cutting protocols satisfying some given criteria such as proportionality or envy-
freeness. As we shall see in Section 4, two of the criteria that we study in this paper (namely,
max-min fair-share and min-max fair-share) are connected to cake-cutting protocols. The
interested reader can refer to the seminal book by Brams and Taylor (1996) or to the paper
by Procaccia (2013) for a more recent overview.
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3 Model

Let A = {1, . . . ,n} be a set of agents and O = {1, . . . ,m} be a set of indivisible objects.
An allocation of the objects to the agents is a vector −→π = 〈π1, . . . ,πn〉, where πi ⊆ O is the
bundle of objects allocated to agent i, called agent i’s share. An allocation −→π is said to be
admissible if and only if it satisfies the two following conditions: (i) i 6= j⇒ πi∩π j = /0 (each
object is allocated to at most one agent) and (ii) ∪i∈A πi = O (all the objects are allocated).
We will denote by Fn,m the set of admissible allocations for a given set of n agents and m
objects (n and m will be omitted when the context is clear). All the allocations considered in
this paper are implicitly admissible.

To find a “good” allocation, it is necessary to know the agents’ preferences over the sets
of objects they may receive. We make two common assumptions concerning the way agents
express their preferences. First, we consider that they are expressed numerically by a utility
function ui : 2O → R+ specifying, for each agent i, the satisfaction ui(π) she enjoys if she
receives bundle π: this is the utilitarian model (Mill 1906). Second, we consider (except in
Section 8) that the agents’ preferences are additive, which means that the utility function of
an agent is defined as follows:

ui(π)
def
= ∑

`∈π

w(i, `),

where w(i, `) is the weight given by agent i to object `. This assumption, as restrictive it may
seem to be, is made in many studies (e.g Bansal and Sviridenko 2006; Lipton et al 2004)
and offers a good compromise between preference expressive power and conciseness.

Adapting the terminology from the survey by Chevaleyre et al (2006), we define an
additive MultiAgent Resource Allocation instance (add-MARA instance for short) as a triple
〈A ,O,w〉, where A is a set of agents, O is a set of objects, and w : A ×O → R+ is a
function specifying the weight w(i, `) given by agent i to object `.

In the following, indices i and j will always refer to agents, and ` to objects. To ease
notation, we will adopt a matrix representation W for the weight function w, where the
element at row i and column ` represents the weight w(i, `). Finally, we will denote by I
the set of all add-MARA instances.

The basic notions of computational complexity (see e.g. Papadimitriou 1994) are sup-
posed to be well-known by the reader: P and NP refer to the two standard complexity
classes; ΣP

2 is the class of problems that can be solved in non-deterministic polynomial
time by a Turing machine augmented by an NP oracle.

4 Five fairness criteria

Even before any fairness consideration, the most basic desirable criterion for a resource
allocation is Pareto-efficiency, of which the definition is recalled here:

Definition 1 Let 〈A ,O,w〉 be an add-MARA instance. We say that allocation−→π dominates
allocation −→π ′ if and only if ui(πi) ≥ ui(π

′
i ) for all i, with at least one strict inequality. A

Pareto-efficient allocation is an admissible allocation which is not dominated by another
admissible allocation.

Pareto-efficiency conveys the idea that the resource to be allocated should not be wasted
or under-exploited, but tells nothing about fairness. Two approaches are possible to deal
with the fairness requirement.
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1. If the preferences are numerical, we can use a collective utility function (CUF) to aggre-
gate the individual preferences into a collective preference, and look for an allocation
that maximizes this function. If this function is carefully chosen, it can convey some
idea of fairness (like the egalitarian criterion min for example, discussed in Section 5).

2. We can choose a Boolean (logical) fairness criterion and look for an allocation that
obeys it, if some exists. The two prominent fairness criteria are envy-freeness (Foley
1967) and proportional fair-share (Steinhaus 1948).

In this paper, we adopt the second point of view. We will consider five fairness crite-
ria (including envy-freeness and proportional fair-share) and show how they form together
a scale of criteria of increasing strength. This scale provides an evaluation of the degree
of fairness of a given allocation on the one hand, and can give an idea of the degree of
“conflictuality” of a given add-MARA instance. For each one of these criteria, we denote by
−→
π �C the fact that the allocation−→π satisfies criterion C ; I|C denotes the set of add-MARA
instances admitting at least one allocation satisfying criterion C .

4.1 Max-min fair-share

One of the most prominent fairness criteria in resource allocation problems is proportional
fair-share, that will be discussed in details in Section 4.2. This criterion, coined by Stein-
haus (1948) in the context of continuous fair division (cake-cutting) problems, states that
each agent should get from the allocation at least the nth of the total utility she would have
received if she were alone.5 However, when one deals with indivisible objects, it is often too
demanding: consider for example a problem with one object and two agents, where obvi-
ously no allocation can give her proportional fair share to each agent. That is why it has been
recently adapted to this context by Budish (2011), which defines the max-min fair-share,6

whose original definition is purely ordinal, but which can be defined in our (utilitarian) set-
ting as follows:

Definition 2 Let (A ,O,w) be an add-MARA instance. The max-min fair-share of agent i
for this instance is

uMFS
i

def
= max−→

π ∈F
min
j∈A

ui(π j)

We say that the allocation −→π satisfies the criterion of max-min fair-share, denoted by −→π �
MFS, if uMFS

i ≤ ui(πi) for all i (each agent obtains at least her max-min fair-share in −→π ).

Example 1 Let us consider the 2 agents / 4 objects instance defined by the following weight
matrix:

W =

(
∗7 2 6 ∗10
4 ∗7 ∗7 7

)
We have uMFS

1 = 12 (with share {2,4}) and uMFS
2 = 11 (with share {1,2}). The alloca-

tion −→π = 〈{1,4},{2,3}〉 marked with stars satisfies the max-min fair-share criterion, with
u1(π1) = 17 > 12 and u2(π2) = 14 > 11.

5 Actually, Steinhaus (1948) does not give any name for this criterion, later named Equal Split Guarantee
by Moulin (1990a).

6 This notion is actually called maximin share by Budish (2011).
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The max-min fair-share of an agent is the maximal utility that she can hope to get from
an allocation if all the other agents have the same preferences as her, when she always
receives the worst share. The max-min fair-share can be considered as the minimal amount
of utility that an agent could feel to be entitled to, based on the following argument: if all
the other agents have the same preferences as me, there is at least one allocation that gives
me this utility, and makes every other agent (weakly) better off; hence there is no reason to
give me less. It is also the maximum utility that an agent can get for sure in the allocation
game “I cut, I choose last”: the agent proposes her best allocation and leaves all the other
ones choose one share before taking the remaining one.

The max-min fair-share level is loosely connected to a result from Hill (1987), recently
refined by Markakis and Psomas (2011), which establishes a worst case guarantee on the
utility an agent can have. However, this guarantee only depends on the maximum weight of
an agent, and so is not very informative, often being just 0.

Beyond its appealing formulation, max-min fair-share has a computational drawback:
the computation of the max-min fair-share uMFS

i itself for a given agent is computationally
hard. More precisely, the following decision problem is NP-complete:

Problem 1 [MFS-COMP]

Input: An add-MARA instance 〈A,O,w〉, an agent i, an integer K.
Question: Do we have uMFS

i ≥ K?

Proposition 1 [MFS-COMP] is NP-complete, for all n≥ 2.

Proof Membership to NP is obvious. NP-hardness can be proved by reduction from the
partition problem:

Problem 2 [PARTITION]

Input: A set X = {x1, . . . ,xn} and a mapping s : X →N such that ∑xi∈X s(xi) = 2L for some
integer L.

Question: Is there a partition (X1,X2) of X such that ∑xi∈X1 s(xi) = ∑xi∈X2 s(xi) = L ?

From a given instance of [PARTITION], we create an instance of [MFS-COMP] with two
agents and n objects {1, . . . ,n}, such that w(1, `) = s(x`) for all ` ∈ {1, . . . ,n}. We consider
agent 1 and integer K is set to L, which completes the reduction.7 It is now easy to see that
uMFS

1 ≥ L if and only if there exists a solution to the partition problem. ut

Let us now focus on the problem [MFS-EXIST] of determining, for a given add-MARA
instance, if there is an allocation satisfying the max-min fair-share criterion. Strong evidence
led us to think that every add-MARA instance had at least one such allocation: it is true in
many restricted cases (see Section 6), and no counterexample was found in thousands of
randomly generated instances (see Section 7). However, surprisingly, Procaccia and Wang
(2014) have recently proved (by a very tricky construction) that there actually exists add-
MARA instances for which there is no allocation satisfying max-min fair-share. Put in other
words, we thus have I|MFS (I . Nevertheless, the precise complexity of the decision prob-
lem of determining, for a given instance, whether there is an allocation satisfying max-min
fair share remains unknown. All that we can say for sure is that this problem belongs to ΣP

2 ,
because it can be solved by the following non-deterministic algorithm:

7 We use here a very similar idea to the one used by Lipton et al (2004), page 4.



Characterizing Conflicts in Fair Division 9

1. Guess an allocation −→π .
2. Compute ui(πi) for each agent i.
3. Check that ui(πi)≥ uMFS

i for each agent i (requires an NP-oracle).

4.2 Proportional fair-share

The aforementioned concept of proportional fair-share was originally defined not on the
utilities but on the resources themselves (Steinhaus 1948). A lot of authors have since given
a natural utilitarian interpretation of this notion, like the one that follows:

Definition 3 Let 〈A ,O,w〉 be an add-MARA instance. The proportional fair-share of
agent i for this instance is

uPFS
i

def
=

1
n

ui(O) =
1
n ∑
`∈O

w(i, `).

We say that the allocation −→π satisfies the criterion of proportional fair-share, denoted by
−→
π � PFS, if uPFS

i ≤ ui(πi) for all i (that is, each agent obtains at least her proportional
fair-share in −→π ).

The justification for this criterion is the following: in the virtual and perfectly fair allo-
cation obtained by dividing each object into n parts, each one allocated to a different agent,
each single agent would enjoy precisely her proportional fair-share.

This criterion is more demanding than max-min fair-share:

Proposition 2 Let 〈A ,O,w〉 be an add-MARA instance. We have uMFS
i ≤ uPFS

i , for all i ∈
A . Hence, for all −→π , we have −→π � PFS =⇒ −→π � MFS, and I|PFS ⊂I|MFS.

Proof Let −→π be an allocation and i an agent. We have ∑ j∈A ui(π j) = ui(O). The minimum
of a set of numbers being weakly lower than their mean, we have

min
j∈A

ui(π j)≤
1
n ∑

j∈A
ui(π j) =

1
n

ui(O) = uPFS
i

Hence
uMFS

i
def
= max−→

π ∈F
min
j∈A

ui(π j)≤ uPFS
i .

The inclusion I|PFS ⊂I|MFS is strict: consider an instance with two agents and one object,
for which every allocation satisfies max-min fair-share, but none satisfies proportional fair-
share. ut

Contrary to max-min fair-share, computing the proportional fair-share for a given agent
is easy. However, determining whether a given add-MARA instance has an allocation satis-
fying proportional fair-share (problem that we shall call [PFS-EXIST]) is computationally
hard:

Proposition 3 [PFS-EXIST] is NP-complete, for all n≥ 2.

This proposition can be proved using a similar reduction as the one used in the proof of
Proposition 1.
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4.3 Min-max fair-share

The min-max fair-share criterion that we now present is, to the best of our knowledge, orig-
inal. It can be seen as the symmetric version of the max-min fair-share criterion defined
earlier.

Definition 4 Let (A ,O,w) be an add-MARA instance. The min-max fair-share of agent i
for this instance is

umFS
i

def
= min−→

π ∈F
max
j∈A

ui(π j)

We say that the allocation −→π satisfies the criterion of min-max fair-share, denoted by −→π �
mFS, if umFS

i ≤ ui(πi) for all i (each agent obtains at least her min-max fair-share in −→π ).

The min-max fair-share of an agent is the minimal utility that she can hope to get from an
allocation if all the other agents have the same preferences as her, when she always receives
the best share. It is also the minimal utility that an agent can get for sure in the allocation
game “Someone cuts, I choose first”. The following result is the equivalent of Proposition 2
and can be proved in a similar way:

Proposition 4 Let 〈A ,O,w〉 be an add-MARA instance. We have uPFS
i ≤ umFS

i , for all i ∈
A . Hence, for all −→π , we have −→π � mFS =⇒ −→π � PFS and I|mFS ⊂I|PFS.

This inclusion is strict, as the following example shows.

Example 2 Let us consider the 3 agents / 3 objects instance defined by the following weight
matrix:

W =

 2 2 ∗2
3 ∗2 1
∗3 2 1


Obviously uPFS

i = 2 for each agent. Hence the allocation marked with stars gives to each
agent her proportional fair-share. However, no allocation gives to each agent her min-max
fair-share (which is 2 for agent 1 and 3 for the other ones).

Exactly like the max-min fair-share, the computation of the min-max fair-share for a
given agent is hard. More precisely, if [MFS-COMP] is the equivalent for min-max fair-
share of decision Problem 1, the following proposition holds.

Proposition 5 [MFS-COMP] is coNP-complete, for all n≥ 2.

The proof is very similar to the one of Proposition 1, and is thus omitted. The decision
problem becomes coNP-complete (instead of NP-complete) because it is just the opposite as
the regular decision version of an optimization problem: the min-max fair-share is defined
as a minimization problem, and we want to know, as for the max-min fair-share, whether
the min-max fair-share of a given agent is greater than a given threshold.

Of course, an add-MARA instance may not always have an allocation satisfying min-
max fair-share. As for max-min fair share, the decision problem of determining whether
there exists one is very likely to be hard, but its precise complexity remains unknown. Once
again, all that we can say for sure is that this problem belongs to ΣP

2 , because it can be solved
by a similar algorithm as the one used at the end of Section 4.1.
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4.4 Envy-freeness

The envy-freeness criterion (Foley 1967) is probably the most prominent one.

Definition 5 Let 〈A ,O,w〉 be an add-MARA instance. The allocation −→π satisfies the cri-
terion of envy-freeness (or simply is envy-free), denoted by −→π � EF, when for all i, j :
ui(πi)≥ ui(π j) (no agent strictly prefers the share of another agent to her own share).

A known fact is that envy-freeness implies proportionality for additive preferences. The
following proposition is actually a bit stronger.

Proposition 6 Any envy-free allocation gives to each agent at least her min-max fair-share.
In other words, for all −→π :−→π � EF =⇒ −→π � mFS, and I|EF ⊂I|mFS.

Proof In every envy-free allocation, each agent obtains a share which is of maximal utility
for her in this allocation. Hence, such a share has a (weakly) greater utility than her min-
max fair-share. Formally : let −→π be an envy-free allocation. Then for all i, j : ui(πi) ≥
max j∈A ui(π j) by definition. Since−→π ∈F , ui(πi)≥min−→

π ∈F max j∈A ui(π j) = umFS
i . Once

again, the inclusion in this proposition is strict, as the following example shows. ut

Example 3 Let us consider the 3 agents / 4 objects instance defined by the following weight
matrix:

W =

 ∗10 6 6 1
10 ∗6 ∗6 1

1 6 6 ∗10


We have umFS

i = 10 for each agent, thus the marked allocation gives the min-max fair-share
to every agent. Now suppose that there exists an envy-free allocation −→π . This allocation
−→
π should give the same utility to agents 1 and 2 since they have the same preferences
(otherwise one of them would be envious): either −→π gives nothing to them, or it gives 6 to
each of them. In both cases they envy agent 3. Hence there is no envy-free allocation for this
instance.

At last, we recall two complexity results related to envy-freeness already stated in the re-
lated work section. First, the problem of existence of a complete (that is in which all goods
are allocated) envy-free allocation is NP-complete (Lipton et al 2004). Second, the prob-
lem of deciding whether an envy-free and Pareto-efficient allocation exists is ΣP

2 -complete
(de Keijzer et al 2009).

4.5 Competitive Equilibrium from Equal Incomes

The last criterion we present is a classical notion in microeconomics (see for example
Moulin 2003, page 177). It has, to the best of our knowledge, almost never been consid-
ered in computer science, with the notable exception of the work by Othman et al (2010)
about course allocation (building on a preliminary version of the work by Budish 2011). This
criterion is based on the following argument: the allocation process should be considered as
a search for an equilibrium between the supply (the set of objects, each one having a public
price) and the demand (the agents’ desires, each agent having the same budget for buying
the objects). A competitive equilibrium is reached when the supply matches the demand.
The fairness argument is straightforward: prices and budgets are the same for everyone. A
lot of variants of this notion exist; the following definition is adapted from Budish (2011).
A discussion about this criterion is postponed at the end of this subsection.
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Definition 6 Let 〈A ,O,w〉 be an add-MARA instance, −→π an allocation, and −→p ∈ [0,1]m a
price vector. A pair (−→π ,−→p ) is said to form a competitive equilibrium from equal incomes
(CEEI), if for each agent i,

πi ∈ argmaxπ⊆O{ui(π) : ∑
`∈π

p` ≤ 1}.

In other words, πi is one of the maximal shares that i can buy with a budget of 1, given that
the price of object ` is p`.
We say that the allocation −→π satisfies the CEEI criterion (or is a CEEI allocation for short),
denoted by −→π � CEEI, if there exists a price vector −→p such that (−→π ,−→p ) forms a CEEI.

Example 4 Let us consider the 2 agents / 4 objects instance defined by the following weight
matrix:

W =

(
∗7 2 6 ∗10
7 ∗6 ∗8 4

)
The marked allocation, associated to price vector 〈0.8,0.2,0.8,0.2〉 forms a CEEI.

The following proposition holds for a lot of continuous resource allocation instances
(divisible goods, existence of monetary compensations, etc.). It also holds in our discrete
model:

Proposition 7 Every CEEI allocation is envy-free. That is, for every allocation −→π :
−→
π � CEEI =⇒ −→π � EF, and I|CEEI ⊂I|EF.

Proof Let−→π be a CEEI allocation, and suppose that ui(π j)> ui(πi) (agent i envies j). Since
budgets and prices are the same for everyone, πi is not the maximal utility share which can
be bought by agent i, which contradicts the definition of the CEEI. Thus −→π is envy-free.
Hence I|CEEI ⊆I|EF. The strictness of this inclusion is proved by Example 6 below. ut

The CEEI criterion also has the following interesting property:

Proposition 8 When the agents’ preferences are strict (i.e. for every agent i and bundles π

and π ′, π 6= π ′ implies ui(π) 6= ui(π
′)), any CEEI allocation is Pareto-efficient.

Proof Let (−→π ,−→p ) be a CEEI allocation. For a share π , we use the notation p(π) def
= ∑`∈π p`.

Suppose that −→π is not Pareto-efficient. Then there is a −→π ′ such that ui(πi)≤ ui(π
′
i ) for all i,

with at least one strict inequality. Since−→π is optimal under each agent’s budget given prices
−→p , we have ui(πi)< ui(π

′
i )⇒ p(πi)< p(π ′i ). But ui(πi)= ui(π

′
i )⇒ πi = π ′i ⇒ p(πi)= p(π ′i )

because preferences are strict. Therefore ∑i∈A
−→p (πi) < ∑i∈A

−→p (π ′i ), which is impossible.
Thus −→π is Pareto-efficient. ut

The following example shows that the strict preference hypothesis, in the previous
proposition, is necessary.

Example 5

W =

 ∗2 3 3 ∗2
2 3 ∗4 1
0 ∗4 2 4


In this instance, preferences are not strict. The marked allocation, associated to price vector
〈0.5,1,1,0.5〉 forms a CEEI. However, it is dominated by the allocation 〈(1,2),(3),(4)〉
which gives utilities (5,4,4). The marked allocation is CEEI but not Pareto-efficient.
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As a consequence of Propositions 7 and 8, when preferences are strict, a necessary con-
dition for the existence of a CEEI is the existence of an envy-free Pareto-efficient allocation.
With this necessary condition, we can prove that the inclusion in Proposition 7 is strict, as
the following example shows:

Example 6 Let us consider the 3 agents / 5 objects instance in which preferences are strict,
defined by the following weight matrix:

W =

 2 12 ∗7 †15 ∗†11
∗†12 15 †11 ∗7 2

15 ∗†20 9 2 1


It can be proved that the allocation marked with ∗ is the only envy-free allocation. However,
this allocation is not Pareto-efficient, as it is dominated by the one marked with †. Hence
there is no Pareto-efficient envy-free allocation. The preferences being strict, Proposition 8
implies that there is no CEEI allocation.

We give now some additional insights about the CEEI criterion used in this article and
its context. The notion of equilibrium is one of the most important concepts in economic
theory, and has long been a subject of investigations, since the end of the 19th century.
The CEEI criterion used in the present article is related to the Fisher model of equilibrium.
Irving Fisher was one of the first economists, with Walras (1874), to give, in his Ph. D.
dissertation (Fisher 1892), a mathematical model of the equilibrium concept, now quoted
after his name.8 The Fisher model formalizes an ideal micro-market in which a set of buyers
are faced with a set of divisible goods (goods may be obtained in fractional quantities). Each
good exists in limited quantity. The utility function of each buyer, specifying the amount of
utility a buyer enjoys for each bundle of goods, is given. Each buyer owns a fixed amount of
money. The problem is to find prices for the goods that “clear the market”, that is, if every
buyer receives a bundle of maximal utility among the bundles that she can afford, then an
equilibrium is obtained: no good is over nor under demanded.

The CEEI criterion we use here is related to a subcase of the Fisher model. First —
and this is the main difference — goods are indivisible (and each exist in one unit). In other
words, the general Fisher model has continuous variables, whereas the CEEI criterion we use
has discrete variables. Second, utility functions of buyers (agents) are linear (i.e. additive).
Third, each agent is endowed with the same amount of money.

An interesting result is that, when agents’ utilities are linear in their consumptions, an
equilibrium of the general Fisher model (i.e. with divisible goods) always exists, in which
all buyers spend all their money. Moreover, in such a competitive equilibrium, prices and
quantities allocated can be computed in polynomial time, by the Eisenberg-Gale convex pro-
gram, which consists of maximizing the Nash CUF9 under linear constraints. See Vazirani
(2007) for details.

8 See also Brainard and Scarf (2000) for a summary of the original Fisher’s equations and for a brilliant
account of his work (actually, I. Fisher had also developed a hydraulic device (!) for calculating equilibrium
prices). Vazirani (2007) is a recent key reference on this subject, building on the linear case of the Fisher
model (hence eliminating the notion of marginal utility present in the original one).

9 In our settings, the Nash CUF is the function gN :−→π 7→∏i∈A ui(πi).
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In our discrete setting of the Fisher model, the situation is quite different: a CEEI allo-
cation may not exist, even with additive utilities.10 Moreover, in a CEEI allocation, a buyer
may not spend all of her money.11

The introduction of the CEEI concept raises the natural and non-trivial question of how
to compute a CEEI allocation for a given add-MARA instance, if such an allocation exists.
The problem turns out to be computationally difficult, as discussed by Othman et al (2010,
section 3.1) in a similar context. The reason is of course the discrete setting of the prob-
lem. To the best of our knowledge, no algorithm has been proposed to solve this problem
exactly.12 In the following, we sketch such an algorithm, however rather naive and probably
inefficient. Due to the discrete nature of the model, the set of admissible allocations of a
given instance can be enumerated (there are mn such allocations). So the problem comes
down to determining whether a given allocation −→π is CEEI. Thanks to Proposition 7, if −→π
is not envy-free, the question is solved negatively. Otherwise, the problem comes down to
finding values for variables p1, . . . , pm (object prices) satisfying the following set of con-
traints:

0≤ p` ≤ 1 for all ` ∈ J1,mK (1)

∑
`∈πi

p` ≤ 1 for all i ∈ J1,nK (2)

∑
`∈π ′

p` > 1 for all i ∈ J1,nK and π
′ ∈ 2O such that ui(π

′)> ui(πi). (3)

Constraints (2) model the fact that each agent can afford her share. Constraints (3) express
the optimality of−→π given the prices: each better share π ′ for i is unaffordable. Unfortunately,
as we can observe, this problem is very likely to be hard to solve in practice because: (i) the
number of constraints of kind (3) is not polynomially bounded, and (ii) these constraints are
not even linear (because of the strict inequality).

4.6 A scale of criteria

Putting Propositions 2, 4, 6 and 7 together leads to the following implication sequence, for
any allocation −→π : (−→π � CEEI)⇒ (−→π � EF)⇒ (−→π � mFS)⇒ (−→π � PFS)⇒ (−→π � MFS).

In other words, these criteria can be ranked from the least to the more demanding as
follows:

weaker stronger

EFPFS
MFS mFS CEEI

As the propositions also show, these results can also be interpreted the other way around,
in terms of add-MARA instances: I|CEEI ⊂I|EF ⊂I|mFS ⊂I|PFS ⊂I|MFS ⊂I , all these
inclusions being strict (see Figure 1).

10 For instance, consider an instance for which no envy-free allocation exists.
11 Note that in this discrete model, money is not “real”, in the sense that it is just a modelling artifact used

to define the “choice set” of buyers. This is an important difference with the combinatorial auction problem
(Cramton et al 2006), in which a buyer is supposed to keep the money not spent if any. This important point
is discussed in details by Othman et al (2010).

12 The work by Othman et al (2010) is devoted to the computation of approximate competitive equilibria.
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I I|MFS I|PFS I|mFS I|EF I|CEEI

Fig. 1 Inclusion properties of add-MARA instances satisfying different fairness criteria.

These five criteria can thus be used to characterize the level of conflict inherent to a given
add-MARA instance. In an instance for which it is proved that there exists an allocation
satisfying the CEEI criterion, the level of conflict is very low, and thus it is possible to find
an allocation which is quite satisfactory for everyone. On the other hand, an instance for
which we cannot even find an allocation satisfying the max-min fair-share criterion is very
prone to conflicts, and in that case, the benevolent arbitrator will have no choice but to leave
some agents unsatisfied.

It can be noticed that all these criteria have a kind of “distributed” (or decentralized)
flavor. The max-min fair-share, proportional fair-share and min-max fair-share criteria are
of similar nature: every agent, only considering her own share, is able to judge whether she
is satisfied or not. Envy-freeness requires the additional knowledge of the other shares, but
each agent is still able to assert on her own whether she is envious or not. As for the CEEI
criterion, once the prices are fixed by the arbitrator, each agent is able to compute her own
share (up to some equivalent shares).

Beyond their differences, these five criteria all have a common very appealing feature:
they are not based on any interpersonal comparison of utilities: the definition of any criterion
does not involve any comparison nor arithmetical operation between utilities of two distinct
agents, so each agent may use her own utility scale.13 This leads to the following (easy)
proposition:

Proposition 9 The max-min fair-share, proportional fair-share, min-max fair-share, envy-
freeness and CEEI criteria are preserved by any linear dilatation of individual utility scales.
Formally, if 〈A ,O,w〉 is an add-MARA instance and −→π an allocation satisfying criterion
C , then −→π also satisfies C for any instance 〈A ,O,wK〉, where K : A → R+ and wK is
defined as follows: wK(i, `) = K(i)×w(i, `).

Finally, the max-min fair-share, proportional fair-share and min-max fair-share criteria
have an interesting feature, which comes from the fact that they are all defined as minimum
thresholds to satisfy for the agents utilities: if for a given add-MARA instance there is an
allocation satisfying one of these three criteria, then either this allocation is Pareto-efficient,
or there exists another allocation which both satisfies Pareto-efficiency and this criterion.14

13 Even if in our examples we use normalized weights. Actually, four of the criteria are even purely ordinal
— proportional fair-share is not.

14 If an allocation is not Pareto-efficient, then it is dominated by at least one Pareto-efficient allocation,
which satisfies the criterion as well.
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This is not the case for the envy-free criterion : as Example 6 shows, one can find instances
having envy-free allocations, none of them being Pareto-efficient.

5 The egalitarian approach

As pointed out at the beginning of Section 4, an orthogonal approach for ensuring fairness
in resource allocation problems is to choose a CUF and find an allocation that maximizes it.
The most prominent one is probably the egalitarian CUF, which can be defined as follows
in our context:

Definition 7 Let 〈A ,O,w〉 be an add-MARA instance. The egalitarian CUF is the function
ge :−→π 7→mini∈A ui(πi). Any allocation maximizing the egalitarian CUF will be called min-
optimal.

This CUF is the formal translation of Rawlsian egalitarianism (Rawls 1971), which re-
commends to maximize the utility of the least well-off agent.

At this point a natural question arises: what are the links between on one hand the egal-
itarian approach of fairness (the min CUF) and on the other hand the approach based on
criteria (Section 4)? Actually, some criteria are not fully compatible with egalitarianism.
For example, an envy-free allocation can be far away from being min-optimal. This ques-
tion is raised by Brams and King (2005). However, as we will see just below, egalitarianism
is more compatible with proportional fair-share as well as with max-min fair-share.

Contrary to the five criteria considered in Section 4, the egalitarian approach only makes
sense if the utilities of the agents are commensurable (since to compute a min-optimal allo-
cation, one must be able to compare the utilities different agents obtain). To cope with this
difficulty, we assume in this section that the agents have normalized weights, namely: there
is a constant K such that for all i, ∑`∈O w(i, `) = K.

Proposition 10 If there is an allocation satisfying the proportional fair-share criterion
(with normalized weights), then any min-optimal allocation satisfies this criterion.

Proof For all i, uPFS
i = K/n. If there is an allocation −→π such that −→π � PFS, then K/n ≤

mini∈A ui(πi). Let −→π ? be a min-optimal allocation. By definition mini ui(πi)≤mini ui(π
?
i ),

hence K/n≤mini∈A ui(π
?
i ) and K/n≤ ui(π

?
i ), for all i. ut

The following example shows that the normalization hypothesis, in the previous propo-
sition, is necessary.

Example 7 Consider the following instance, given by its (non normalized) weight matrix. 5 ∗4 †3
0 †2 ∗1
∗†4 7 1

→ uPFS
1 = 4

→ uPFS
2 = 1

→ uPFS
3 = 4

The proportional fair-share of each agent is given on the right of the matrix. The only alloca-
tion satisfying the proportional fair-share criterion is marked with ’∗’. The only min-optimal
allocation, marked with ’†’, does not satisfy the proportional fair-share criterion.

Things are less clear for max-min fair-share. On the one hand, the latter result does not
hold for max-min fair-share,15 as the following counter-example shows (with K = 100).

15 Actually a similar result holds if weights are normalized such that uMFS
i is equal for all agents.
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Example 8 Consider the following instance, given by its weight matrix. 58 †15 ∗†19 8
†63 ∗5 25 ∗7

37 10 ∗27 †26

→ uMFS
1 = 19 / u(π†

1 ) = 34
→ uMFS

2 = 12 / u(π†
2 ) = 63

→ uMFS
3 = 27 / u(π†

3 ) = 26

The max-min fair-share of each agent is given at the right of the matrix, and the correspond-
ing shares are marked with ’∗’ in the matrix. A min-optimal allocation16 and the correspond-
ing utilities are marked with ’†’. In this min-optimal allocation, the third agent does not get
her max-min fair-share (expecting at least 27 but getting only 26).

For this instance, there are allocations satisfying the max-min fair-share criterion, for
example 〈{2,4},{1},{3}〉, but none of them are min-optimal. Moreover, the min-optimal
allocation does not provide her proportional fair-share to agent 3 (26 < 100/3). Hence from
Proposition 10, we know that this instance admits no allocation satisfying the proportional
fair-share criterion, and from Propositions 6 and 7, it admits no allocation satisfying the
min-max fair-share, envy-freeness or CEEI criteria.

On the other hand however, such an instance is rare: for example, using a uniform gener-
ation process similar to the impartial culture in voting theory (see Section 7), for 3 agents and
4 objects, approximately only one instance over 3500 is a counter-example similar to Exam-
ple 8, in which a min-optimal allocation does not satisfy the max-min fair-share criterion.
This shows that the max-min fair-share criterion has a good correlation with the egalitarian
approach in practice.

6 Restricted cases

In this section we examine the behaviour of our criteria — and especially the max-min fair-
share one — in some restricted cases, giving to these criteria an additional insight. These
restrictions concern the agents’ preferences and the number of agents and objects. The main
result here is that for all these restrictions (even if some of them are very general), it is
always possible to find an allocation satisfying the max-min fair-share criterion.

6.1 Restricted preferences

6.1.1 0-1 preferences

We first consider the case where the weights are binary, which corresponds to the MARA
version of approval voting. Interestingly, we can prove that an allocation satisfying max-
min fair-share can always be found, using a decentralized protocol where each agent takes
in turn, according to a predefined sequence, one of her preferred (approved, here) objects
among the remaining ones. The outcome of such a picking protocol is an allocation called
product of sincere choices by Brams and King (2005). Using this protocol — also called
elicitation-free sequential protocol (Bouveret and Lang 2011) — with an alternating se-
quence of agents always results in an allocation satisfying max-min fair-share (if every agent
acts sincerely):

16 This min-optimal allocation is also leximin-optimal. The leximin ordering (Sen 1970) is a refinement
of the min ordering for which a lexicographic comparison of sorted vectors of weigths is used, instead of
comparing their min values.
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Proposition 11 (Approval resource allocation) Any add-MARA instance with weights re-
stricted to 0,1 belongs to I|MFS.

Proof In an instance with n agents and m objects, the max-min fair-share of agent i is b si
n c,

with si = ∑
m
`=1 w(i, `). The following very simple algorithm (a picking protocol) gives any

agent her max-min fair-share:

while ( true )
for i = 1 to n

Allocate to agent i an object ` not allocated yet such that w(i, `) = 1 if any,
Otherwise allocate to i any remaining object of weight 0.
If all objects are allocated, exit.

The algorithm passes dm
n e times in the for loop, bm

n c of these passes being complete. During
each complete pass, n objects are allocated, one to each agent. We have si ≤ m, so during
each of the first b si

n c complete passes at least, agent i receives an object of weight 1. ut

6.1.2 Identical preferences

When agents have identical utility functions, our scale of criteria collapses into two levels:
the max-min fair-share criterion on the one hand, and all others on the other hand.

Proposition 12 If agents have identical preferences (for all i, j, ` : w(i, `) = w( j, `)), then:

1. there always exists an allocation satisfying the max-min fair-share criterion, and in
particular any min-optimal allocation satisfies it;

2. if preferences are strict (i.e. for every agent i and bundles π and π ′, π 6= π ′ implies
ui(π) 6= ui(π

′)), no allocation satisfies the proportional fair-share criterion, and thus
none satisfies the three more demanding criteria;

3. for any allocation −→π , the following five propositions are equivalent: (i) each agent in
−→
π gets the same utility; (ii) −→π � CEEI; (iii) −→π � EF; (iv) −→π � mFS; (v) −→π � PFS.

Proof 1. Consider a min-optimal allocation −→π ?. Then for each agent i:

uMFS
i

def
= max−→

π ∈F
min
j∈A

ui(π j)

= max−→
π ∈F

min
j∈A

u j(π j) (because of identical preferences)

= min
j∈A

u j(π
?
j )≤ ui(π

?
i )

2. Because preferences are strict, for any allocation −→π , the n numbers ui(πi) are different.
Then, at least one of them is strictly smaller than their mean.

3. Let −→π be an allocation in which agents get the same utility, which is ui(O)/n for any
agent i. Consider the following price vector: p` = nw(i, `)/ui(O). The total price is
n, and the price of every share of −→π is exactly 1. So each agent can buy any share
of −→π , and any share that would provide higher utility costs necessarily more. Hence
−→
π � CEEI. The other three implications follow from the scale of criteria (Section 4).
The implication closing the cycle can be easily proved: if −→π � PFS then

ui(πi)≥ ui(O)/n for all i.
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Suppose for contradiction that agent j gets strictly more than her proportional fair-share:

u j(π j)> u j(O)/n

Summing inequalities over all agents we get

∑
i

ui(πi)> ui(O)

which is impossible. Hence ui(πi) = ui(O)/n, the same for all i. ut

The first point of this proposition says that as soon as the agents have identical prefer-
ences, the max-min fair-share criterion is always satisfiable. It turns out that it is even true
for a slightly weaker condition than fully identical preferences:

Proposition 13 If all agents but one have identical preferences, then there always exists an
allocation satisfying the max-min fair-share criterion.

Proof The n− 1 first agents having identical preferences can agree on the same allocation
−→
π of which any share gives their max-min fair-share to anyone of them. Let the last agent
choose first in −→π : she gets her min-max fair-share so her max-min fair-share too. ut

6.1.3 Same-order preferences (SOP)

Intuitively, the more similar the agents preferences are, the more likely they are in con-
flict, and the harder it will be to satisfy the aforementioned fairness criteria. This notion of
similarity is well captured by the concept of same-order preferences (SOP for short). For-
mally, an add-MARA instance satisfies SOP (we will say that the instance is SOP) if for
all i, `, `′ : ` < `′⇒ w(i, `) ≥ w(i, `′). In other words, the agents agree on the same ranking
of objects (object 1 is the best one — or one of the best if there are ties, object m is the
worst one — or one of the worst), but can give them different weights.17 For any weight
function w, we will denote by w↑ the function i, ` 7→ w(i,σi(`)), where σi is a permutation
of J1,mK such that ` < `′⇒ w(i,σi(`)) ≥ w(i,σi(`

′)). Obviously, w↑ is a “SOP” version of
w. It turns out that if we can find an allocation satisfying max-min fair-share for a given SOP
add-MARA instance, then we can find one for every permutation derived from it:

Proposition 14 Let 〈A ,O,w〉 be an add-MARA instance. We have 〈A ,O,w↑〉 ∈ I|MFS
=⇒ 〈A ,O,w〉 ∈I|MFS.

Proof Let 〈A ,O,w〉 be an add-MARA instance, and let −→π ↑ be an allocation satisfying the
max-min fair-share criterion for the SOP instance 〈A ,O,w↑〉. Let S = S1,S2, ...Sm be the
sequence of agents defined as follows: S` is the agent who receives object ` in −→π ↑. Such
a sequence which depends on −→π ↑ always exists because the instance is SOP, and because
each object is given to exactly one agent.

The key is to notice that the “product of sincere choices” −→π obtained by the picking
protocol18 using sequence S, applied to the original instance 〈A ,O,w〉, will make every
agent at least as well-off as in −→π ↑. To see it, notice that before step p in the building of −→π ,
exactly p−1 objects have been chosen, so the worst object that agent Sp could have at step
p is the object p obtained in−→π ↑. Consequently, for each agent i and each object of π

↑
i , there

17 This property is sometimes known as full-correlation (Bouveret and Lang 2011).
18 For the meaning of the term “picking protocol”, see the beginning of Subsection 6.1.
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is an object in πi which is weakly better for i: the utility of i weakly increases from −→π ↑ (in
〈A ,O,w↑〉) to −→π (in 〈A ,O,w〉).

Since the max-min fair-share of an agent only depends on the set of weights (not on
their ordering), it is the same for the SOP instance and the original one. Since −→π ↑ � MFS,
and −→π makes everyone at least as well-off, we conclude −→π � MFS. ut

Here is an example giving the intuition supporting this proof.

Example 9 Consider the following instance, given by its weight matrix.

w =

(
4 3 2 1
5 2 10 3

)
→ uMFS

1 = 5
→ uMFS

2 = 10

A SOP version of this instance, with a marked allocation satisfying the max-min fair-share
criterion is

w↑ =
(

4 ∗3 ∗2 1
∗10 5 3 ∗2

)
This last allocation corresponds to the sequence of sincere choices 〈2,1,1,2〉. Applying this
sequence to the original instance yields the following marked allocation

w =

(
∗4 ∗3 2 1
5 2 ∗10 ∗3

)
in which each agent is better-off than in w↑ above. The reason is clearly because w is less
conflicting than w↑. So for example when agent 2, obeying the sequence, chooses first in w,
she takes the object 3 (of weight 10), but she frees the object 1, which is now available for
agent 1.

Because any instance can be considered as a derivation (by permutations of weights) of
a SOP one, this proposition shows that SOP instances are the most difficult ones as far as the
max-min fair-share criterion is concerned.19 So, to prove that all instances of a given subset
satisfy this criterion, we only need to prove that any SOP instances of that subset satisfies
it. In the following, we will often consider only the SOP instances of the subsets of interest,
and hence the results obtained for them will be valid also for all instances of the subset.

6.1.4 Weights defined by a scoring function

We consider here the case where agents express their preferences using exactly the same
multiset of weights (formally, for all (i, j) ∈A 2, {{wi,` | ` ∈ O}}= {{w j,` | ` ∈ O}}, where
{{}} denotes a multiset). Equivalently we could say that agents use the same scoring function.
A scoring function is simply a weakly decreasing function g : J1,mK→R+. It can be used to
convert a purely ordinal expression of preferences into to a numerical one, in the following
way. Consider that each agent ranks strictly the objects from 1 (the most preferred) to m
(the least preferred). If r(i, `) is the rank given to object ` by agent i, then the weight w(i, `)
is defined as g(r(i, `)). This framework, which is standard in social choice, is the basis
of well-known procedures in voting theory (plurality, veto, Borda scores for examples). It
has been already considered in fair division of indivisible goods (Bouveret and Lang 2011;
Baumeister et al 2014) and social choice (Boutilier et al 2012).

19 This also seems to be true for more demanding criteria as our experiments show, see Section 7.
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Proposition 15 Any add-MARA instance in which preferences are defined by the same scor-
ing function is in I|MFS, and any min-optimal allocation satisfies max-min fair-share in this
case. Conclusions 2 and 3 of Proposition 12 are also valid.

Proof By Proposition 14 it is enough to consider SOP instances, which are in this case
instances with identical preferences. Then use Proposition 12. ut

6.2 Restrictions upon the number of agents and objects

6.2.1 Two agents

Despite its simplicity, the two agents case is interesting because an allocation satisfying the
max-min fair-share criterion can always been obtained by the famous cut-and-choose game.

Proposition 16 Any 2-agents add-MARA instance belongs to I|MFS.

Proof Agent 1 cuts (meaning that she makes the two shares), then guaranteeing her max-min
fair-share. Agent 2 chooses first, so she gets her min-max fair-share, therefore her max-min
fair-share too (by the property of the ordered scale, Subsection 4.6). ut

6.2.2 No more objects than agents

If there are strictly less objects than agents, the scale of criteria is reduced to only one level,
and hence is of no help.20 The case with as many objects as agents highlights the min-max
fair-share criterion.

Proposition 17 If there are strictly less objects than agents, any allocation satisfies the
max-min fair-share criterion, but none satisfies the other criteria.

If there are as many objects as agents, then

1. any allocation which is a matching (giving to each agent one object) satisfies the max-
min fair-share criterion.

2. any allocation satisfying the min-max fair-share criterion is a matching, envy-free,
Pareto-efficient and CEEI.

Proof

Case m < n. In any allocation, one agent at least receives no object, hence uMFS
i = 0 for all

i. As 0≤ ui(πi) for all i, each agent gets her max-min fair-share. Of course no allocation
satisfies the proportional fair-share criterion.

Case m = n. 1. We have easily uMFS
i = min`∈O w(i, `), hence each agent receives her max-

min fair-share in a matching.
2. We have also easily umFS

i = max`∈O w(i, `). In an allocation satisfying the min-max
fair-share criterion each agent receives a preferred object. The allocation is hence an
envy-free matching. It is Pareto-efficient because for an agent to get strictly more
utility, she necessarily has to take another object from another agent, strictly re-
ducing this agent’s utility. A price of 1 for each object provides a CEEI allocation,
because any increase of utility must be paid more. ut

20 The best resort in this case would be a normalized leximin-optimal allocation.
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6.2.3 Up to three more objects than agents

As mentioned in Section 4.1, Procaccia and Wang (2014) have proved that for every n > 2 it
is possible to find an instance with m = nn objects for which there is no allocation satisfying
the max-min fair-share criterion (i.e. not in I|MFS). This raises an interesting question: is it
possible to find an instance not in I|MFS, with m < nn ? Actually, the answer is positive for
n = 3, as shown also by the same authors who have found such an instance with 3 agents
and 12 (< 33) objects. The general question can hence be formulated as follows: what is,
for a given number of agents n > 2, the smallest number of objects mn for which a (n,mn)
instance is not in I|MFS ? (equivalently, for any given n > 2, what is the maximum number
of objects mn such that any add-MARA instance with n agents and less than mn objects is
guaranteed to have an instance satisfying the max-min fair-share criterion ?) Obviously, as
shown by Proposition 17, n < mn. In this section, we increase this lower bound by showing
that if m is no more than n+3, then it is always possible to find an allocation satisfying the
max-min fair-share criterion (that is n+3 < mn and in particular 7≤ m3 ≤ 12).

We begin by the case m = n+1.

Proposition 18 For n≥ 2, any add-MARA instance with n agents and n+1 objects belongs
to I|MFS.

Proof Thanks to Proposition 14, we can focus on SOP instances. Since objects n and n+1
are the worst ones, it is not difficult to see that all the shares from allocation 〈{1}{2} . . .{n−
1}{n,n+1}〉 give to each agent her max-min fair-share. ut

To continue with m = n+2 and m = n+3, we need first a convenient definition of the
extension of an instance obtained by adding p agents and q objects to a given instance, and
an additional notation.

Definition 8 Let I = 〈A ,O,w〉 be an add-MARA instance. A (p,q)-extension of I is an
add-MARA instance I+p,+q = 〈A ′,O ′,w′〉 such that A ′ = A ∪ {n+ 1, . . . ,n+ p}, O ′ =
O ∪{m+1, . . . ,m+q}, and w′(i, `) = w(i, `) for all (i, `) ∈A ×O .

We denote by uMFS
i (I) the max-min fair-share of agent i in instance I.

Then we give some preliminary lemmas. The first one shows the behavior of uMFS
i (I)

when k additional agents and objects are added to I.

Lemma 1 Let I = 〈A ,O,w〉 be an add-MARA instance. Then for all i ∈A , uMFS
i does not

strictly increase from I to any (k,k)-extension of I. More formally, for all integer k > 0, and
all (k,k)-extension I+k,+k of I, uMFS

i (I+k,+k)≤ uMFS
i (I).

Proof Let I be an instance with n agents and m objects, and I′ a (1,1)-extension of it. Start
from an allocation −→π ′ of I′ that gives her max-min fair-share to agent i in it, that is:

n+1
min
j=1

(ui(π
′
j)) = uMFS

i (I′) (4)

Removing from −→π ′ the share containing object m+ 1 yields a valid (possibly incom-
plete) allocation −→π for I. Hence,

n
min
j=1

(ui(π j))≤ uMFS
i (I) (5)
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Removing a number from a set cannot strictly decrease its minimum, so we have

n+1
min
j=1

(ui(π
′
j))≤

n
min
j=1

(ui(π j)) (6)

By Equations 4 to 6 we conclude

uMFS
i (I′)≤ uMFS

i (I) (7)

Iterating the previous result from 1 to k completes the proof. ut

The next (easy) lemma gives a very simple expression of max-min fair-share, propor-
tional fair-share and min-max fair-share when all weights are equal.

Lemma 2 Let I be an instance with n agents and m objects, all weights being equal to 1.
Then uMFS

i (I) = bm
n c, uPFS

i (I) = m
n , umFS

i (I) = dm
n e, for all i ∈A .

Proof First equality: m = nbm
n c+ r = (n− r)bm

n c+ r(bm
n c+ 1) with 0 ≤ r < n. So in an

allocation satisfying the max-min fair-share criterion, n− r agents receive bm
n c and r agents

receive bm
n c+1. The second equality is just the definition of the proportional fair-share. For

the third equality, the proof is similar to the first. ut

The next lemma gives an upper bound of the max-min fair-share of an agent.

Lemma 3 Let I be an add-MARA instance. For any agent i, the following inequality holds:
uMFS

i (I)≤ bm
n cmaxm

`=1 w(i, `). In particular when m < 2n then uMFS
i (I)≤maxm

`=1 w(i, `).

Proof Let I′ be the instance I in which all weights of agent i are replaced by maxm
`=1 w(i, `).

Since uMFS
i (I) is obviously a weakly increasing function of each w(i, `), we have uMFS

i (I)≤
uMFS

i (I′). It is clear also that if all the weights given by agent i are scaled by a constant k,
then the max-min fair-share of this agent is also scaled by the same constant k. Now, take
k = maxm

`=1 w(i, `). From this last fact it follows that uMFS
i (I′) = k · uMFS

i (I′′), where I′′ is I
with all weights of agent i replaced by 1. The conclusion then follows from the first equality
of Lemma 2. ut

Proposition 19 For n≥ 2, any add-MARA instance with n agents and n+2 objects belongs
to I|MFS.

Proof Thanks to Proposition 14, we can restrict the proof to SOP instances. We will prove
the result by induction, using the following induction hypothesis: (Hn) any SOP instance
I with m = n+ 2 belongs to I|MFS. The base case n = 2 and m = 4 is directly given by
Proposition 16.

Let us now suppose that (Hn) is true. Then we take any SOP instance I′ with n+1 agents
and m+1 objects, with (m+1) = (n+1)+2. We have to prove that there is an allocation
−→
π ′ for I′ such that −→π ′ � MFS. I′ is SOP, so w(i,1)≥ w(i,2)....≥ w(i,m)≥ w(i,m+1) for
all i, 1≤ i≤ n+1.

We restrict I′ by removing agent n+1 and object 1. We obtain a SOP (n,m)-instance I,
with m = n+2 which, by the induction hypothesis, has an allocation−→π such that−→π � MFS.
We extend this allocation to :

−→
π
′ = 〈π1, · · · ,πn,{1}〉 (8)

(−→π ′ is−→π augmented with a new share built with the object 1 alone).−→π ′ is a valid allocation
for I′. We will now show that −→π ′ � MFS.
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From m = n+2 and n≥ 2 it follows that m+1 < 2(n+1). Hence, by Lemma 3:

uMFS
i (I′)≤ m+1

max
`=1

w(i, `) = w(i,1) (9)

proving that agent n+ 1 obtains her max-min fair-share in −→π ′. As for other n first agents,
Lemma 1 says that this is also the case for them in −→π ′ (they get the same share in I and I′,
hence same value, and their max-min fair-share cannot strictly increase from I to I′). This
proves that (Hn)⇒ (Hn+1), which completes the proof. ut

The case with n agents and m = n+3 objects can also be proved the same way, but for
that we need to prove the base case with 3 agents and 6 objects.

Lemma 4 Any add-MARA instance with 3 agents and 6 objects belongs to I|MFS.

Before proving this lemma, we will introduce a small (but tedious) technical lemma:

Lemma 5 Let I be a SOP (3,6)-instance with w(i,1)≥ w(i,2)≥ w(i,3)≥ w(i,4)≥ w(i,5)
≥ w(i,6) for all i, and w(i,1) < uMFS

i . Then the allocation −→π ∗ = 〈{1,6}{2,5}
{3,4}〉 satisfies the max-min fair-share criterion.

Proof Since w(i,1)< uMFS
i , we have w(i, `)< uMFS

i for all i and `. So, any allocation satis-
fying the max-min fair-share criterion cannot include a share with a single object, and must
have 2 objects in each share.

For convenience, we adopt the following convention: instead of 〈{1,6}{2,5}
{3,4}〉 we just use the notation 〈16 25 34〉. There are 15 allocations with 2 objects in each
share (up to permutations of the shares):

−→
π

1 = 〈12 34 56〉; −→π 2 = 〈12 35 46〉; −→π 3 = 〈12 36 45〉;
−→
π

4 = 〈13 24 56〉; −→π 5 = 〈13 25 46〉; −→π 6 = 〈13 26 45〉;
−→
π

7 = 〈14 23 56〉; −→π 8 = 〈14 25 36〉; −→π 9 = 〈14 26 35〉;
−→
π

10 = 〈15 23 46〉; −→π 11 = 〈15 24 36〉; −→π 12 = 〈15 26 34〉;
−→
π

13 = 〈16 23 45〉; −→π 14 = 〈16 24 35〉; −→π 15 =−→π ∗ = 〈16 25 34〉.

Now we have to check that for every allocation −→π k (k ∈ J1,14K), for every share π∗i ∈−→
π ∗ there is a share πk

j ∈
−→
π k such that πk

j has less or equal utility than π∗i , proving that
min3

i=1 u(π∗i ) ≥ min3
i=1 u(πk

i ). This is the case for −→π 1, because we have w(i,1)+w(i,6) ≥
w(i,5)+w(i,6), w(i,2)+w(i,5)≥ w(i,5)+w(i,6) and w(i,3)+w(i,4)≥ w(i,5)+w(i,6).
Another example, for−→π 14 : check that w(i,1)+w(i,6) =w(i,1)+w(i,6), w(i,2)+w(i,5)≥
w(i,3)+w(i,5) and w(i,3)+w(i,4)≥ w(i,3)+w(i,5). The other comparisons can be veri-
fied the same way. ut

With this technical result, we are know ready to prove Lemma 4.

Proof (Lemma 4) As usual, we consider a SOP (3,6)-instance I′, and without loss of gen-
erality, we suppose that w(i,1)≥ w(i,2)≥ w(i,3)≥ w(i,4)≥ w(i,5)≥ w(i,6) for all i. We
will show that I′ belongs to I|MFS by building an allocation −→π ′ such that −→π ′ � MFS. We
consider two subcases.

(i) If for an agent, say agent 3, we have uMFS
3 ≤ w(3,1), then give the share {1} to this

agent, so she gets her max-min fair-share. Remains a (2,5)-instance I that belongs to I|MFS

by Proposition 16. Hence there exists an allocation −→π which gives her max-min fair-share
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to both agents (1) and (2) in I. Extend −→π to −→π ′ = 〈π1,π2,{1}〉 (−→π ′ is −→π augmented with
a new share built with the object 1 alone). −→π ′ is a valid allocation for I′. Agent 3 gets her
max-min fair-share in I′, as said before. Agents 1 and 2 get the same share in I and I′, hence
the same value. By Lemma 1, their max-min fair-share cannot strictly increase from I to I′,
so they also get their max-min fair-share in I′.

(ii) Otherwise, we have w(i,1) < uMFS
i and then by Lemma 5, allocation −→π ∗ = 〈{1,6}

{2,5}{3,4}〉 satisfies the max-min fair-share criterion.
ut

Proposition 20 For n≥ 2, any add-MARA instance with n agents and n+3 objects belongs
to I|MFS.

Proof The case n = 2 and m = 5 directly follows from Proposition 16. For n≥ 3, the proof
is by induction, similar to the proof of Proposition 19. The base case is given by Lemma 4.
From n≥ 3 and m = n+3 it follows again that m+1 < 2(n+1), so Lemma 3 still applies.

ut

7 Experiments

Tables 1 and 2 give some experimental results concerning our scale of criteria. We have
generated random instances for n, the number of agents, ranging from 3 to 5, and for m, the
number of objects, ranging from 1 to 11. For each combination of n,m, we have generated
1000 pairs of instances, the first one being non SOP, and the second one being the SOP
version of the first. In Table 1, weights are uniformly drawn from [0,1]. In Table 2, weights
are drawn from a Gaussian distribution, mean 0.5 and standard deviation 0.1.

The number on line n,m and column C gives the number of instances, out of 1000,
which satisfy the criterion C . The last column is not devoted, as could be expected, to the
CEEI criterion, but to the EFP criterion which means envy-free and Pareto-efficient. In fact,
it is computationally difficult to characterize exactly an instance having a CEEI allocation
in general — see the paper by Othman et al (2010, Section 3) and the discussion end of
Subsection 4.5 — so in experiments we have replaced CEEI by EFP.21

These experiments aim only at getting an insight into the behavior of concrete instances
over the scale of criteria. They are not motivated by performance concerns, as this article
is not about algorithm design. All the algorithms used in these experiments to characterize
instances are mainly based on a simple enumeration of all possible allocations, with some
straightforward heuristics.22 This, together with the high theoretical complexity of some of
the problems addressed,23 explains the relatively small size of instances generated.

From these experiments, several facts can be noticed, which confirm our theoretical
results.

– Main result : the scale of properties is really significant, of course when n ≤ m. The
numbers weakly decrease from left to right, and often strictly decrease, showing that the
scale is not trivial.

21 We have seen in Section 4.5 that EFP is a necessary condition for having a CEEI when preferences are
strict. We believe that the CEEI and EFP criteria are not equivalent in the context of this discrete model.

22 For example, when computing the most demanding criterion for a given instance, we first consider pro-
portionality and envy-freeness, as these criteria can be tested in polynomial time.

23 As a reminder, testing the existence of a complete and envy-free allocation (fourth column) is NP-
complete (Lipton et al 2004), and testing the existence of a Pareto-efficient and envy-free allocation (last
column) is ΣP

2 -complete (de Keijzer et al 2009).
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Uniform Non SOP instances
n m MFS PFS mFS EF EFP
3 1 1000 0 0 0 0
3 2 1000 0 0 0 0
3 3 1000 618 231 231 231
3 4 1000 821 563 318 318
3 5 1000 829 730 530 477
3 6 1000 991 967 933 890
3 7 1000 1000 999 997 989
3 8 1000 1000 999 997 995
3 9 1000 1000 1000 1000 1000
3 10 1000 1000 1000 1000 1000
3 11 1000 1000 1000 1000 1000
4 1 1000 0 0 0 0
4 2 1000 0 0 0 0
4 3 1000 0 0 0 0
4 4 1000 746 86 86 86
4 5 1000 945 511 130 130
4 6 1000 927 744 217 192
4 7 1000 920 843 530 434
4 8 1000 998 998 978 923
4 9 1000 1000 1000 998 984
4 10 1000 1000 1000 1000 999
4 11 1000 1000 1000 1000 1000
5 1 1000 0 0 0 0
5 2 1000 0 0 0 0
5 3 1000 0 0 0 0
5 4 1000 0 0 0 0
5 5 1000 839 43 43 43
5 6 1000 991 376 38 38
5 7 1000 989 726 73 61
5 8 1000 970 835 178 130
5 9 1000 964 903 561 387
5 10 1000 1000 997 985 953
5 11 1000 1000 1000 1000 998

SOP instances
MFS PFS mFS EF EFP
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 340 2 2 2
1000 652 237 218 218
1000 775 500 374 374
1000 942 780 615 611
1000 990 958 869 831
1000 1000 995 983 965
1000 1000 1000 1000 990
1000 1000 1000 1000 999
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 159 0 0 0
1000 563 2 1 1
1000 809 131 86 86
1000 868 500 241 240
1000 972 751 442 433
1000 1000 952 752 706
1000 1000 999 962 912
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 62 0 0 0
1000 430 0 0 0
1000 764 0 0 0
1000 896 70 29 29
1000 941 449 142 138
1000 987 732 302 286

Table 1 Experimental results with a uniform distribution of weights.

– SOP instances are more conflicting than non SOP ones, in accordance with Proposition
14.

– In Table 1 (uniform distribution of weights) for a fixed number of agents, instances are
less conflict-prone as the number of objects increases: intuitively, we get closer to the
continuous (divisible) case. Note that this remark also concurs with the theoretical and
experimental results by Dickerson et al (2014) about envy-freeness, which show that
when the number of objects exceeds a given threshold, an envy-free allocation is very
likely to exist.

– In Table 2 (Gaussian distribution of weights, mean 0.5, standard deviation 0.1): instances
where m is close to a multiple of n are less conflict-prone than others, which is not very
surprising.

– All generated instances belong to I|MFS. This shows that it is actually very unlikely to
find an instance not in I|MFS (at least with uniform or Gaussian generation of weights)
even if such instances exist (Procaccia and Wang 2014).
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Gauss Non SOP instances
n m MFS PFS mFS EF EFP

3 1 1000 0 0 0 0
3 2 1000 0 0 0 0
3 3 1000 610 221 221 221
3 4 1000 26 1 0 0
3 5 1000 3 2 1 1
3 6 1000 994 960 915 886
3 7 1000 737 256 41 40
3 8 1000 223 181 153 122
3 9 1000 1000 1000 1000 1000
3 10 1000 998 935 663 624
3 11 1000 873 852 847 782
4 1 1000 0 0 0 0
4 2 1000 0 0 0 0
4 3 1000 0 0 0 0
4 4 1000 740 92 92 92
4 5 1000 82 0 0 0
4 6 1000 2 1 0 0
4 7 1000 0 0 0 0
4 8 1000 999 996 961 918
4 9 1000 993 393 20 16
4 10 1000 622 219 19 13
4 11 1000 268 224 191 120
5 1 1000 0 0 0 0
5 2 1000 0 0 0 0
5 3 1000 0 0 0 0
5 4 1000 0 0 0 0
5 5 1000 843 57 57 57
5 6 1000 254 0 0 0
5 7 1000 8 0 0 0
5 8 1000 1 0 0 0
5 9 1000 2 1 0 0
5 10 1000 1000 1000 994 969
5 11 1000 1000 608 6 6

SOP instances
MFS PFS mFS EF EFP

1000 0 0 0 0
1000 0 0 0 0
1000 2 0 0 0
1000 0 0 0 0
1000 3 2 2 2
1000 647 218 218 218
1000 185 55 45 44
1000 223 151 123 123
1000 999 967 870 839
1000 908 738 653 645
1000 873 847 829 807
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 767 86 86 85
1000 267 21 14 13
1000 114 24 14 13
1000 268 216 157 140
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 0 0 0 0
1000 2 0 0 0
1000 854 57 57 56
1000 400 13 6 6

Table 2 Experimental results with a Gaussian distribution of weights. Mean = 0.5, standard deviation = 0.1

8 Beyond additive preferences

As noticed in the introduction of this paper, the main interest of additive preferences is their
simplicity. However, a major drawback of this kind of preferences is their limited expressiv-
ity, which is a main motivation for several work to investigate other preference representa-
tion contexts (see e.g. Chevaleyre et al 2004, for an example). In this section, we give some
insights about the extension of our approach to non-additive preferences.

Even if, as we have seen earlier, it is almost always possible, for a given add-MARA
instance, to find an allocation satisfying the max-min fair-share criterion, things are surpris-
ingly different for more general non-additive preferences. The most natural way of relaxing
preference additivity while keeping some conciseness is to allow limited synergies (com-
plementarities or substitutabilities) between objects. This is the exact idea behind k-additive
functions originally introduced in the context of fuzzy measures (Grabisch 1997), and also
used in the context of resource allocation (Chevaleyre et al 2004).

Formally, we consider in this section k-additive multiagent resource allocation instances
(k-add-MARA instances for short), defined as triples 〈A ,O,w〉, where w is now a mapping
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from A × 2O to R such that w(i,π) = 0 for every agent i and every subset π such that
|π|> k. As before, the utility function is defined additively: ui(π) = ∑π ′⊆π w(i,π ′).

Obviously, 1-additive functions are the additive functions (so the 1-add-MARA in-
stances are exactly the add-MARA instances considered earlier, corresponding to the model
presented in Section 3), and thus forbids any preferential interdependence between ob-
jects. A 2-additive function allows such interdependence. For example, the weight w({1,2})
stands for the proper interest of the pair of objects {1,2} beyond these two individual ob-
jects: if w({1,2})> 0, the value of this pair is more important than the intrinsic value of the
two separated objects (which shows that they are complementary); if w({1,2})< 0, they are
substitutable.

To be consistent with the model presented in Section 3, we will require in the following
that ui(π) ≥ 0 for all agent i and share π: a share has always a positive effect on the agent
concerned. This implies that w(i,{`})≥ 0 for every agent and every singleton, but, contrary
to previous sections, it does not imply that all the weights should be positive: as we have
seen earlier, this is not the case when two given objects are substitutable.

As soon as we switch from 1-additive to 2-additive functions, finding an instance not be-
longing to I|MFS (that is for which no allocation satisfying the max-min fair-share criterion
exists) is not challenging anymore:

Example 10 Let us consider the 2 agents / 4 objects instance defined by the following weight
functions:
- w(1,{1,2}) = w(1,{3,4}) = 1
- w(2,{1,3}) = w(2,{2,4}) = 1
- w(i,π) = 0 for every other share π .
It is not hard to see that uMFS

i = 1 for both agents, and no allocation giving at least 1 to both
agents exists.

Actually, the problem of determining whether there exists an allocation satisfying the
max-min fair-share criterion (further referred to as [k-ADD-MFS-EXIST]) is even hard:

Proposition 21 [k-ADD-MFS-EXIST] is NP-hard, for k ≥ 2 and n≥ 3.

Proof NP-hardness can be proved by reduction from the partition problem (Problem 2). Let
〈{x1, . . . ,xn},s〉 be an instance of this problem. We suppose w.l.o.g. that all the weights are
even (if it is not the case, one can multiply all the weights by two and obtain an equivalent
problem). From this instance, we create a 3-agents / n+ 4 objects k-add-MARA instance,
where the agents’ preferences are defined as follows:

– for all i, w(i,{`}) = s(x`) and w(i,{`,n+`′}) =−s(x`)/2 for all `∈ J1,nK and `′ ∈ J1,4K
– w(1,{n+1,n+2}) = w(1,{n+3,n+4}) = L
– w(2,{n+1,n+3}) = w(2,{n+2,n+4}) = L
– w(3,{n+1,n+4}) = w(3,{n+2,n+3}) = L
– w(i,π) = 0 for every other share π .

We can first observe that ui(π)≥ 0 for every share π and every agent i. Indeed, consider
for example agent 1. If |π∩Jn+1,n+4K| ≤ 2, then u1(π)≥∑`∈π s(x`)−2×∑`∈π s(x`)/2≥
0. If |π ∩ Jn+1,n+4K|> 2, then u1(π)≥∑`∈π s(x`)+L−4×∑`∈π s(x`)/2≥∑`∈π s(x`)+
L−L−2×∑`∈π s(x`)/2≥ 0.
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Let us compute the max-min fair-share for each agent. Let us consider the allocation
({1, . . . ,n},{n+ 1,n+ 2},{n+ 3,n+ 4}). The evaluation of these three shares by agent 1
gives respectively 2L, L, and L. Hence uMFS

1 ≥ L.
Let now −→π be a custom allocation. We distinguish four cases, according to how the

objects from Jn+1,n+4K are split up among the different shares: either one share contains
the four objects (case (i)), or one share contains three objects (case (ii)), or at least one share
contains two objects (cases (iii) and (iv)).

(i) The objects `′ > n only appear in one share (say w.l.o.g. π1), possibly containing ob-
jects in J1,nK. In that case, the objects ` ≤ n which are not in π1 are split between the
two shares π2 and π3. Since the utility function of agent 1 is additive on the objects of
{1, . . . ,n} and that ∑

n
`=1 w(1,{`}) = 2L, we have u1(π2)≤ L or u1(π3)≤ L.

(ii) One share (say w.l.o.g. π1) contains exactly three objects `′ > n (and possibly some in
J1,nK). Suppose that π1 does not contain any object in J1,nK. In that case, obviously,
u1(π1) = L. Suppose now that π1 contains some objects from J1,nK. Then it can be
observed that for each `≤ n, u1(π1) = u1(π1 \{`})+s(x`)−3×s(x`)/2 < u1(π1 \{`}).
If we apply this reasoning by iteratively removing all the objects ` < n, we get that
u1(π1)< L.

(iii) One share (say w.l.o.g. π1) is either {n+ 1,n+ 2}∪O ′ or {n+ 3,n+ 4}∪O ′, where
O ′ ⊆ J1,nK. Suppose that O ′ = /0. Then obviously u1(π1) = L. Suppose now that π1
contains some objects from J1,nK. Then it can be observed that for each `≤ n, u1(π1) =
u1(π1 \{`})+ s(x`)−2× s(x`)/2 = u1(π1 \{`}). If once again we apply this reasoning
by iteratively removing all the objects ` < n, we get that u1(π1) = L.

(iv) No share contains neither {n+1,n+2} nor {n+3,n+4}. Suppose in that case that one
share (say π1) has a utility greater than or equal to L. It means that ∑`∈π1

s(x`) ≥ L. It
thus means that we have ∑`∈πi s(x`) ≤ L for both i ∈ {2,3}. Since none of the shares
contain {n+ 1,n+ 2} nor {n+ 3,n+ 4}, we have that u1(πi) ≤ L for both remaining
shares.

In cases (i), (ii), (iii) and (iv), mini∈A u1(πi) ≤ L. Hence uMFS
1 = L. The other agents’ case

can be treated similarly.
We will now prove that there is an allocation satisfying the max-min fair-share criterion

if and only if the initial instance is a yes-instance from the partition problem. First we can
prove that every allocation−→π such that no share contains all the objects from Jn+1,n+4K is
weakly Pareto-dominated. To see that, we can observe that for every allocation −→π , there are
at least two agents that are not satisfied by objects `′ > n (meaning that they do not receive at
least L from these objects). Let us assume that 2 and 3 are these two unsatisfied agents. Then,
obviously, transferring objects `′ > n from π2 and π3 to π1 is a weak Pareto-improvement: it
does neither hurt agents 2 and 3 (because objects `′ > n have a negative influence unless they
form a satisfactory combination), nor agent 1, who will receive an extra utility L which will
compensate the potential negative synergies with objects from J1,nK. Hence we can restrict
our proof to allocations such that one share contains all the objects from Jn+1,n+4K.

Let −→π be such an allocation, and assume w.l.o.g. that π1 contains Jn+ 1,n+ 4K. Obvi-
ously, u1(π1)≥ L. Since the utility function of the agents restricted to objects from J1,nK is
additive and that the total utility of these objects is 2L, the only way of giving their max-
min fair-share (L) to both agents 2 and 3 is to distribute all the objects from J1,nK to them,
such that ∑`∈π2

s(x`) = ∑`∈π3
s(x`) = L: this is equivalent to finding a partition in the initial

instance of [PARTITION]. ut

It can be noticed that Proposition 21 only gives a NP-hardness result, as it is not known
yet whether [k-ADD-MFS-EXIST] belongs to NP. We can only say that this problem be-
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longs to ΣP
2 , because it can be solved by the same non-deterministic algorithm as in the

additive case (see end of Section 4.1). Moreover, the utility function used in the reduction
is neither sub- nor super-modular. We do not know whether the hardness result still holds if
we restrict to these particular kinds of k-additive utility functions.

9 Open problems

This work raises several open questions that are listed below. Notice that questions 1 to 3,
concerning the CEEI criterion, are somewhat connected.

1. The precise complexity classes of the following problems are unknown: MFS-EXIST,
MFS-EXIST, CEEI-TEST, CEEI-EXIST, and k-ADD-MFS-EXIST. C -EXIST is the de-
cision problem of determining, given an add-MARA instance, whether there exists an
allocation satisfying the criterion C . CEEI-TEST is the problem of determining whether
a given allocation is CEEI.

2. It is not known whether the following statement is true or false: When the agents’
preferences are strict (i.e. for every agent i and bundles π and π ′, π 6= π ′ implies
ui(π) 6= ui(π

′)), then any envy-free and Pareto-efficient allocation is also CEEI.
With Propositions 7 and 8, this statement, if true, would give (under the strict preference
hypothesis) the equivalence between the CEEI criterion and the conjunction of envy-
freeness and Pareto-efficiency. A counter-example of this result would be an instance
with strict preferences, having an envy-free and Pareto-efficient allocation but not CEEI.

3. We have sketched at the end of Subsection 4.5 an algorithm to compute a CEEI alloca-
tion if there is one (and answer “no” when no such allocation exists), but this approach is
very naive and very likely to be inefficient in practice. Hence the question of efficiently
computing such a CEEI allocation remains open.

4. For a given number of agents n > 2, what is the maximum number of objects mn such
that every add-MARA instance with less than mn is guaranteed to be in I|MFS (see the
beginning of Subsection 6.2.3) ?

10 Conclusion and future work

In this paper we have considered five fairness criteria for resource allocation, two of which
being classical, two of which being less well-known, and one being original. We have shown
how these criteria form, in the context of the fair allocation of indivisible goods with additive
preferences, an ordered scale that can be used as a basis not only for finding satisfactory
(fair) allocations, but also for measuring to which extent it is possible to find some. We have
also run some experiments that give some insights on how instances divide up on this scale
of properties, and finally we have shown that the extension of these criteria to more general
preferences is likely to have quite different properties.

Beyond the open problems presented in the previous section, this work raises several
interesting and more general questions. Firstly, it would be interesting to investigate to which
extent the similarity and dissimilarity of preference profiles influences the probability of
existence of allocations satisfying each criterion (the analysis of SOP instances is a start
but deserves to be refined). For example, it could be interesting to experimentally test the
assumption that the more dissimilar the preferences are, the more likely fair allocations exist;
which seems to be the exact opposite in voting theory (see e.g Hashemi and Endriss 2014).
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Then, from a more theoretical point of view, the question of extending the results to
non-additive problems is worth being further investigated.

Lastly, since four of the five criteria considered are purely ordinal (the proportional fair-
share criterion is not), it would be interesting to analyze to which extent our results carry
over to an ordinal setting with separable24 preferences: unlike numerical additivity, ordi-
nal separability leaves many pairs of allocations incomparable. Hence, even if the criteria
themselves can be directly expressed ordinally, the way they must be adapted to deal with
incomparable pairs is not so clear and deserves further investigation.
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