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Abstract The paper considers fair allocation of indivisible nondisposable items that gener-
ate disutility (chores). We assume that these items are placed in the vertices of a graph and
each agent’s share has to form a connected subgraph of this graph. Although a similar model
has been investigated before for goods, we show that the goods and chores settings are in-
herently different. In particular, it is impossible to derive the solution of the chores instance
from the solution of its naturally associated fair division instance. We consider three com-
mon fair division solution concepts, namely proportionality, envy-freeness and equitability,
and two individual disutility aggregation functions: additive and maximum based. We show
that deciding the existence of a fair allocation is hard even if the underlying graph is a path
or a star. We also present some efficiently solvable special cases for these graph topologies.

Keywords Computational social choice · resource allocation · fair division · indivisible
chores

CR Subject Classification J.4 (Economics) · I.2.11 (Multiagent Systems) · F.2.2
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1 Introduction

Fair division of goods and resources is a practical problem in many situations and a popular
research topic in Economics, Mathematics and Computer science. Sometimes, however, the
objects that people have to deal with are undesirable, i.e., instead of utility create some cost.
Imagine that a cleaning service firm allocates to its teams a set of offices, corridors, etc in
a building. Each team has some idea of how much effort each room requires. The cost of
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the whole assignment for a team may be in the form of time the team will have to spend
on the job, and this might depend on whether the work in all assigned rooms can start si-
multaneously or whether they have to be treated one after another. Moreover, for practical
reasons, it is desirable that each team’s assignment is a contiguous set of rooms. As another
example consider a firm that supervises the operation of the computer network during a con-
ference. Each of its employees has to choose one of the possible shifts, but shifts scheduled
at different times of the conference may incur different opportunity cost for various persons.
Moreover, we can assume that everybody prefers to have just one uninterrupted period to
spend at work.

The constraints described above could be represented by an undirected graph whose ver-
tices are rooms or time intervals and there is an edge between two vertices if the respective
rooms are adjacent; or the corresponding time periods immediately follow each other. Each
agent should obtain a connected piece of the underlying neighborhood graph. Complete
graphs correspond to the ‘classic’ case with no connectivity constraints. By contrast, paths
and stars represent the simplest combinatorial structures, and yet such graphs can be used
to model a rich variety of situations. For example, a path may represents successive time in-
tervals and a star corresponds to a building with a central foyer and mutually non-connected
rooms accessible from this foyer.

Related work. The mathematical theory of fair division started with the seminal paper of
Steinhaus (1948). Although originally most researchers focused on divisible items (the topic
is also known as the cake-cutting problem), fair division of indivisible goods has also re-
ceived a considerable amount of attention in the traditional and computational social choice
literature. The interested reader can for instance read the survey by Bouveret et al. (2015)
for an overview of this topic.

Several recent papers combine graphs and fair division of indivisible items by assuming
that agents are located on the vertices of a graph. Abebe et al. (2017) and Bei et al. (2017) de-
fine an allocation to be locally envy-free if no agent envies a neighbor’s allocation, and they
call it locally proportional if each agent values her own allocation at least as much as the av-
erage value of allocations of her neighbors. The former work characterizes graphs for which
a single-cutter protocol can give locally envy-free (and thus also locally-proportional alloca-
tions) and the latter proposes a moving-knife algorithm that outputs an envy-free allocation
on trees. Bredereck et al. (2018) analyze the classic and the parameterized complexity of
finding allocations that are locally envy-free and simultaneously complete, Pareto efficient,
or optimize the utilitarian social welfare.Chevaleyre et al. (2007) and Gourvès et al. (2017)
consider the case where each agent has an initial endowment of goods and can trade with
her neighbors in the graph. The authors study outcomes that can be achieved by a sequence
of mutually beneficial deals.

In the paper by Bouveret et al. (2017) for the first time a graph-based constraint on
agents’ bundles has been imposed. The authors model the items as vertices of a graph and
they require that each agent should receive a bundle that forms a connected subgraph. They
show that even if the underlying graph is a path the problems to decide whether there exist
proportional or envy-free divisions with connected shares are NP-complete. In case of stars,
envy-freeness is also intractable, but a proportional division can be found by a polynomial
algorithm. In addition, Bouveret et al. (2017) study maximin share (MMS) allocations, a
fairness notion introduced by Budish (2011). 1They show that a MMS allocation always

1 Consider all the possible divisions of the cake into n disjoint pieces. The maximim share of an agent is
her utility for the worst piece taken in an allocation that is most favourable for her in this respect. A MMS
allocation is one where each agent is ensured a piece with utility at least her maximin share.



Chore Division on a Graph 3

exists if the underlying graph is a tree, provide a polynomial algorithm to find one in this
case and show that a cycle may admit no MMS allocation. Lonc and Truszczynski (2018)
study MMS allocations on cycles in greater depth. They identify several cases when MMS
allocations always exist (e.g., at most three agents and at most 8 goods, the number of goods
not exceeding twice the number of agents, fixed number of agent types) and provide results
on allocations guaranteeing each agent a certain portion of her maximin share.

Now we review some other works that also consider allocations on a graph with the
additional constraint that each bundle has to be connected. First, Suksompong (2017) deal
with paths only and approximately fair (proportional, envy-free and equitable) allocations
up to an additive approximation factor. He shows that for all the three fairness notions there
is a simple approximation guarantee derived from the maximum value of an item and that for
proportionality, as well as equitability, an allocation achieving this bound can be computed
efficiently.

Bilò et al. (2018) deal with two relaxations of envy-freeness: envy-free up to one good,
briefly EF1 (an agent does not think that another agent’s bundle, possibly with one of its
outer items removed, is more valuable than her own bundle) and envy-free up to two outer
goods, briefly EF2. They characterize graphs admitting allocations fulfilling these notions
and provide efficient algorithms to find such allocations. Oh et al. (2018) present an algo-
rithm that computes a contiguous EF1 allocation for three agents with identical valuations
using a logarithmic number of queries.

Igarashi and Peters (2018) study Pareto-optimality. They show that for paths and stars a
Pareto optimal allocation can be found efficiently, but the problem is NP-hard even for trees
of bounded pathwidth. They also show that it is NP-hard to find a Pareto-optimal MMS
allocation even on a path.

It is worth noting that although the study of connected fair division is relatively recent in
the context of indivisible items, there is an important literature on the contiguity requirement
in the context of cake-cutting. From the great number of various results we consider among
the most interesting ones the contrast between the proven existence of envy-free (Stromquist
1980) and equitable (Aumann and Dombb 2010; Cechlárová et al. 2013) divisions with
connected pieces and, on the other hand, the nonexistence of finite algorithms for computing
them (Stromquist 2008; Cechlárová and Pillárová 2012).

Beyond considering the connectivity constraint, an important aspect in which our work
departs from the mainstream literature on fair division is the fact that we consider nega-
tive items (chores). Chore division of divisible goods was mentioned for the first time by
Gardner (1978). Although straightforward modifications of some algorithms for positive
utilities can also be applied to the chore division context (e.g., the Moving Knife algorithm
for proportional divisions), it happens more often that chore division problems are more
involved than their fair division counterparts. For example, the discrete algorithm for ob-
taining an envy-free division of divisible chores for three persons by Oskui (Robertson and
Webb 1998, pages 73-75) needs nine cuts and the procedure based on using four moving
knifes makes 8 cuts (Peterson and Su 2002), while in the Selfridge’s algorithm for envy-free
(positive) division (Woodall 1980) five cuts suffice. If the number of agents is 4, the moving-
knife procedure by Brams et al. (1997) needs 11 cuts, while the first algorithm for envy-free
division of chores, given by Peterson and Su (2002), needs 16 cuts.

The fact that chore division has been given much less attention in research is mirrored
also in monographs on fair division. For example, Robertson and Webb (1998) only deal
with chores in Section 5.5. Chapter 7 in the book Economics and Computation edited by
Rothe (2015) deals with cake cutting, but only Section 7.4.6 treats chores. Chapter 12 on fair
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division of indivisible goods in the Handbook of Computational Social Choice by Bouveret
et al. (2015) does not mention chores at all.

Of the more recent works on chore division let us mention Caragiannis et al. (2012)
who deal with divisible and indivisible goods and chores from the point of view of the
price of fairness for three fairness notions. Heydrich and van Stee (2015) consider the price
of fairness for the fair division of infinitely divisible chores. Aziz et al. (2017) also deal
with chores; the considered fairness notion is maximin share guarantee. In the divisible
chores setting, Dehghani et al. (2018) give the first discrete and bounded protocol for envy-
free chore division problem and Farhadi and Hajiaghayi (2018) prove the Ω(n log n) lower
bound for the number of queries in a proportional protocol for chores.

Finally, besides chores division and fair division with connectivity constraints, another
stream of works that is related to our paper concerns approximation of fairness criteria. In
the context of indivisible items, where the existence of fair allocations cannot be ensured,
studying approximate fairness – like we do in this paper – is natural. Amongst the seminal
works that concern this topic in the context of fair division of indivisible goods, Markakis
and Psomas (2011) prove a worst case guarantee on the value that every agent can have and
they propose a polynomial algorithm for computing allocations that achieve this guarantee.
By contrast, they show that if P 6= NP there is no polynomial algorithm to decide whether
there exists an allocation where each agent can get a bundle worth at least 1/ρn for any
constant ρ ≥ 1. Lipton et al. (2004) focus on the concept of envy-freeness. They show that
there exists an allocation with maximum envy not exceeding the maximum marginal utility
of a good. However, the problem of computing allocations with minimum possible envy is
hard, even in the case of additive utilities.

Our contribution. In this paper, we extend the work of Bouveret et al. (2017) about fair
division of goods on a graph. We also use the connectivity constraints defined by a graph
on the items. However, we deal with nondisposable undesirable items, often called chores.
We use three classic fairness criteria, namely proportionality, envy-freeness and equitability,
and two different individual disutility aggregation functions: additive and maximum based.
We show that dealing with goods and chores is inherently different. In particular, simply
transforming an instance with chores into an instance with goods and then applying an
algorithm that works for goods will not yield an allocation that satisfies the same properties
in the initial chore instance.

Then we investigate the complexity of the problems to find a fair allocation of chores.
It is known that these problems are hard on complete graphs in the additive case, but the
maximum-based case, as far as we know, has not been studied before. Therefore, we com-
plement the picture by providing efficient algorithms for proportionality and equitability,
and show that envy-freeness leads to an NP-complete problem.

Further, we concentrate on two special classes of graphs: paths and stars. In more de-
tail, we provide a general reduction for paths that directly implies NP-completeness of the
existence problems for all the considered fairness criteria and both disutility aggregations.
Moreover, by a very small modification of the reduction we obtain that these problems are
hard even in the binary case i.e., when disutility values for chores are either 0 or 1.

By contrast, if the underlying graph is a star, we propose an efficient algorithm, based on
bipartite matching techniques, to decide whether an allocation exists such that each agent has
a connected bundle whose disutility is 0. This in turn implies that envy-freeness and equi-
tability criteria admit efficient algorithms for decision problems in the binary case. Matching
techniques lead to efficient algorithms also in the maximum-based case, even when disutili-
ties are not restricted to be binary. In the additive case we provide an efficient algorithm for
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proportionality. On the other hand, it is NP-complete to decide the existence of envy-free or
equitable valid allocations on a star.

Outline. This paper is organized as follows. In Section 2 we introduce the model of con-
nected fair division of indivisible chores and the definitions of the various fairness criteria
used in the paper. Section 3 is devoted to a detailed comparison of the goods and chores
setting. Our technical results are presented mainly in Sections 4, 5 and 6 which respectively
deal with the cases where the underlying graph is a complete graph, a path and a star. Table 1
shows an overview of the results obtained in this paper. Finally, we discuss our findings and
suggest some open problems in Section 7.

complete graph path star
additive maximum additive maximum additive maximum

proportionality NPC P NPC NPCa P P
Proposition 3 Theorem 1 Theorem 4 Theorem 6 Theorem 8 Theorem 7

envy-freeness NPC NPC NPC NPCa NPCb NPCb

Proposition 3 Theorem 3 Theorem 5 Theorem 6 Theorem 12 Theorem 13
equitability NPC P NPC NPCa NPC P

Proposition 3 Theorem 2 Theorem 5 Theorem 6 Theorem 14 Theorem 9

a Even with binary disutilities
b Polynomial with strict disutilities, Theorems 10 and 11

Table 1: Overview of the complexities for the existence problems

2 Model

Let N = {1,2, . . . ,n} be the set of agents, and let G = (V,E) be an undirected graph. Vertices
V represent objects, and they are interpreted as nondisposable chores. We will denote the
number of chores by m. Each agent i∈N has a non-negative disutility (cost, regret) function
ui : V → R+. The n-uple of disutility functions is denoted by U .

An instance of CONNECTED CHORE DIVISION CCD is a triple I = (N,G,U ). When
we shall occasionally talk about problems with positively interpreted utility, we shall call
them CONNECTED FAIR DIVISION problems, briefly CFD.

Any subset X ⊆V is called a bundle. We consider two disutility aggregation functions.
In the additive case the disutility agent i derives from bundle X is equal to the sum of the
disutilities of the objects that form the bundle, i.e. uadd

i (X) = ∑v∈X ui(v). In the maximum-
based case the disutility of a bundle is derived from the maximum disutility of an object in
the bundle, i.e. umax

i (X) = max{ui(v) | v ∈ X}. If the aggregation function is not specified
or if it is clear from the context, the superscript may be omitted. In the maximum-based
extension we shall also consider an important binary case when the disutilities of agents for
objects are either 1 or 0. The binary case represents the situation of agents finding some
objects negative without expressing the “degree of negativity” and some other objects bring
them neither nuisance nor joy.
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In the additive case we assume that the disutilities are normalized. This means that there
is a constant U such that uadd

i (V ) = U for each agent. Throughout the paper, unless stated
otherwise, we will assume that U = 1.

An allocation is a function π : N → 2V assigning each agent a bundle of objects. An
allocation π is valid if:

– for each agent i ∈ N, bundle π(i) is connected in G;
– π is complete i.e.,

⋃
i∈N π(i) =V and;

– no item is allocated twice, so that π(i)∩π( j) = /0 for each pair of distinct agents i, j ∈N.

We say that a valid chore allocation π is:

– proportional if ui(π(i))≤ U
n for all i ∈ N;

– envy-free if ui(π(i))≤ ui(π( j)) for all i, j ∈ N;
– equitable if ui(π(i)) = u j(π( j)) for all i, j ∈ N.

Let us remind the reader that the corresponding notions of proportionality and envy-
freeness for CFD are defined by reversing the respective inequalities. Equitability is defined
in the same way in both cases, hence an allocation that is equitable for goods is equitable
in the chores setting and conversely. However, no result for equitable allocation of goods
with connected bundles has been published yet, so our results offer an analysis for the goods
setting too.

Similarly as in the ’classic’ case of indivisible goods without connectivity constraints,
the existence of allocations fulfilling the above definitions (proportionality, envy-freeness
and equitability) is not ensured in general. Therefore, we shall deal also with approximate
fairness. For a given constant ρ ≥ 1, we say that a valid chore allocation π is ρ-proportional
if each agent i ∈ N receives a bundle such that ui(π(i))≤ ρ · U

n . An allocation π is ρ-envy-
free if ui(π(i))≤ ρ ·ui(π( j)) for each pair of agents i, j. Finally, an allocation is ρ-equitable
if u j(π( j))/ρ ≤ ui(π(i))≤ ρ ·u j(π( j)) holds for each pair of agents i, j. Later in this paper
we shall see that even for paths the problems to decide whether a valid allocation exists
such that the disutility of each agent equals 0 is NP-hard. This immediately implies that the
problems to decide the existence of approximately fair allocations are intractable for any
ρ ≥ 1.

We will consider the following computational problems that all take an instance I =
(G,N,U ) of CCD as their input. PROP-CCD, EF-CCD and EQ-CCD ask whether I
admits a proportional, envy-free and equitable allocation, respectively. If we want to stress
which disutility aggregation functions is used, we insert prefix ADD or MAX to this notation.

Notice that with maximum-based disutility aggregation, proportionality does not have a
similar interpretation as in the additive case, where dividing the disutility by the number of
agents corresponds to sharing the total burden. Still, we shall use the term proportionality
also in the case when agents care for the worst item in their bundle, meaning that we seek an
allocation that restricts the disutility by the same threshold for everybody. We shall use the
notation λ -MAX-PROP-CCD to denote the problem to decide whether for a given instance
of CCD there exists a valid allocation π such that umax

i (π(i))≤ λ for each agent i ∈ N.
It is easy to see that all the considered problems belong to the class NP, as given an

allocation, it can be verified in polynomial time whether it is valid and also whether it is
proportional, equitable (linear in the problem size) or envy-free.

Let us conclude these technical preliminaries with a brief recall of the definitions of the
basic graph-theoretic notions we use in the paper. A graph (V ′,E ′) is a subgraph of (V,E) if
V ⊆V ′ and E ⊆ E ′. A sequence of vertices (v0,v1, . . . ,vk) of G such that {vi−1,vi} ∈ E for
each i = 1,2 . . . ,k is called a path. If additionally {vk,v0} ∈ E, it is called a cycle. A graph is
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said to be connected if there is a path between each pair of vertices. A connected component
of a graph G is an inclusion wise maximal connected subgraph of G. A connected graph is
a tree if it does not contain any cycle. A star with n vertices is a tree with n−1 vertices of
degree one, and one vertex (the center) of degree n−1.

A graph (V,E) is bipartite if there is a partition V1,V2 of its vertices such that for all
{v1,v2} ∈ E, e1 ∈ V1 and e2 ∈ V2. In the following, we will slightly abuse notations and
denote any bipartite graph with a triple (V1,V2,E). A matching M of a bipartite graph
G = (V1,V2,E) is a subgraph of G such that no two edges in M share a common vertex.
A matching is perfect if it contains exactly min(|V1|, |V2|) edges.

Finally, a flow network is a quadruple (V,A, lb,ub), where (V,A) is a directed graph
where one vertex denoted by σ (the source) has no incoming arc, and one vertex denoted by
τ (the sink) has no outgoing arc. Functions ub and lb map each arc (v,v′) to an integer, such
that lb(v,v′)≤ ub(v,v′) for all (v,v′) ∈ A. ub(v,v′) is an upper bound, called the capacity of
(v,v′) and lb(v,v′) the lower bound of (v,v′). If the lower bound is omitted for an arc then it
means that it is 0 for this arc. For each vertex v ∈V , let δ+(v) (δ−(v), respectivelly) denote
the set of vertices which are connected to v in (V,A) through an outgoing edge from v (an
ingoing edge to v, respectively). A valid flow of a flow network (V,A, lb,ub) is a mapping
f : A→ R satisfying the following two conditions:

– for each (v,v′)∈A, lb(v,v′)≤ f (v,v′)≤ ub(v,v′) (lower bound and capacity constraints);
– for each v ∈V \{σ ,τ}, ∑v′∈δ−(v) f (v′,v) = ∑v′∈δ+(v) f (v,v′) (flow conservation).

For such a feasible flow, the value ∑v′∈V f (σ ,v′) is called the value of the flow. A maximum
flow is a flow with maximum value of all feasible flows.

Section 6.7. of Ahuja et al. (1993) explains how to decide the existence of a feasible
flow in a network with nonzero lower bounds by one computation of a maximum flow in
a network with zero lower bounds. For the latter problem many efficient algorithms exist
(see e.g. Chapter 10 of Schrijver 2003). The first one was proposed by Dinits (1970) and its
complexity is O(pq2) where p = |V | and q = |A|.

We shall also intensively use the fact that if a network with integral capacities and lower
bounds admits a feasible flow of integral size K then it also admits an integral flow of size K
– Integrality Lemma, see Corollary 11.2c or Theorem 11.1 in the book by Schrijver (2003).

3 Relation between fair division of goods and chores

Taking into account the large number of existing results concerning the fair division of
goods, one could be tempted to try and adapt these results to the case of chores. For two
agents, this will certainly work. As Bogomolnaia et al. (2017, page 4) explain, in this special
case, allocating goods is equivalent to allocating exemptions of chores. More formally, the
following approach will work. Pretend that the disutilities are utilities and apply any fair
division algorithm. If the obtained allocation π is proportional then simply exchanging the
bundles yields a chore-proportional division, since ui(π(i)) ≥ 1/2 implies ui(π(3− i)) ≤
1/2. Similarly, envy-freeness for goods means ui(π(i)) ≥ ui(π(3− i)), and by exchanging
the bundles we get envy-freeness for chores, as ui(π(2− i))≤ ui(π(i)).

However, as soon as there are three agents or more, this approach does not work, and
there is no obvious equivalence between CCD instances and CFD instances, as we will now
illustrate. A first easy observation is that if in a CFD instance there are more agents than
items, no proportional and envy-free allocation can exist (as necessarily somebody receives
nothing), which is not necessarily the case with chores. It may seem natural to transform a
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chore division instance to a ‘dual’ fair division instance by simply replacing each disutility
ui(v) by a ‘reverse’ desirable utility M− ui(v) for each agent i and each object v, where
M is a suitable number. We show that the properties of the mutually dual instances do not
translate.

Example 1 Let us consider the CCD instance I with three agents 1,2,3 and four vertices
v1,v2,v3,v4 arranged on a path in this order and disutilities given in the left half of Table 2.
Its right half shows the utilities for the ‘dual‘ CFD instance I ′. 2

v1 v2 v3 v4

agent 1 6 4 0 0
agent 2 7 0 1 2
agent 3 5 0 0 5

v1 v2 v3 v4

agent 1 4 6 10 10?

agent 2 3? 10? 9 8
agent 3 5 10 10? 5

Table 2: The CCD (left) and CFD (right) instances for proportionality notion

As U = 10, a proportional chore allocation should give each agent a bundle of disutility at
most 10/3. I does not admit a valid proportional allocation, as nobody is willing to take
vertex v1. In the dual CFD instance I ′, the proportional share is 10 and a proportional valid
allocation exists: simply give agent 1 vertex v4, agent 2 bundle {v1,v2} and agent 3 vertex
v3. This allocation is indicated by stars in the right half of Table 2.

Example 2 Now slightly change the disutilities of agent 3; the new CCD instance and its
dual CFD instance are given in Table 3.

v1 v2 v3 v4

agent 1 6 4 0? 0?

agent 2 7 0? 1 2
agent 3 0? 5 5 0

v1 v2 v3 v4

agent 1 4 6 10 10
agent 2 3 10 9 8
agent 3 10 5 5 10

Table 3: The CCD (left) and CFD (right) instances for envy-freeness.

Now I has an envy-free valid allocation, namely π(1) = {v3,v4}, π(2) = {v2} and π(3) =
{v1}, again indicated by stars in the left half of Table 3. However, there is no envy-free valid
allocation in the dual fair division instance I ′. To see this, let us first realize that as there
are three agents and four items, exactly one of the agents has to receive a bundle consisting
of two vertices. Since each allocated bundle has to be connected, there are exactly three such
two-elements bundles: {v1,v2}, {v2,v3} and {v3,v4}. One can see that each such bundle has
utility strictly greater than 10 for at least two agents, and as each agent values individual
vertices at not more than 10, there will always be somebody envying the agent receiving the
two-element bundle.

In the previous examples, we have mapped a CCD instance to a CFD one using a sim-
ple linear transformation of the disutilities to utilities. The next two propositions are much

2 In this and the following example the disutilities in the CCD instances (tables in the left) are normalized
to 10 and the utilities in the corresponding dual CFD instances to 30 (tables in the right).
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stronger, we show that there is no transformation of the set of CCD instances to the set
of CFD instances that preserves the fairness properties under additive aggregation. For any
function ϕ , we will denote by ϕ(U ) the n-tuple of functions (ϕ(u1), . . . ,ϕ(un)).

Proposition 1 There is no mapping ϕ : [0,1]→R+ such that a CCD instance I =(N,G,U )
admits an envy-free allocation if and only if the CFD instance J = (N,G,ϕ(U )) admits
an envy-free allocation. This assertion holds even if restricted to binary CCD instances.

Proof For contradiction assume that such a mapping ϕ exists. We provide three different
instances I1,I2,I3 of CCD, described in Figure 1, which will lead to a contradiction.

Instance I1 = (N1,G1,U1):

v1 v2 v3

u1(v1) = 0
u2(v1) = 0

u1(v2) = 1
u2(v2) = 1

u1(v3) = 0
u2(v3) = 0

Instance I2 = (N2,G2,U2):

v1 v2 v3

u1(v1) = 1
u2(v1) = 0

u1(v2) = 0
u2(v2) = 0

u1(v3) = 0
u2(v3) = 1

Instance I3 = (N3,G3,U3):

v1 v2 v3

u1(v1) = 1
u2(v1) = 1
u3(v1) = 0

u1(v2) = 0
u2(v2) = 0
u3(v2) = 1

u1(v3) = 0
u2(v3) = 0
u3(v3) = 0

Fig. 1: The CCD instances used in the proof of Proposition 1.

In I1 we have n = 2 and m = 3 (Figure 1, top). It is clear that I1 admits no envy-
free allocation, since the agent who receives v2 necessarily envies the other agent. If ϕ

is a desired mapping then the CFD instance J1 = (N1,G1,ϕ(U1)) admits no envy-free
allocation. This means in the allocation π ′ defined by π ′(1) = {v1,v2} and π ′(2) = {v3}
either agent 1 envies agent 2 (this means ϕ(0)+ϕ(1) < ϕ(0)) or agent 2 envies agent 1
(this means ϕ(0) < ϕ(1) +ϕ(0)). As the values of ϕ are nonnegative, the former is not
possible and that latter leads to ϕ(1)> 0.

The second instance I2 also has n = 2 and m = 3 (Figure 1, middle). I2 admits an
envy-free allocation π(1) = {v2,v3}, π(2) = {v1}, hence the corresponding CFD instance
J2 = (N2,G2,ϕ(U2)) should also admit an envy-free allocation; let us denote one by π ′. As
we have shown ϕ(1) > 0 previously, π ′ cannot allocate V to a single agent, since the other
one will envy her. Further, for the same reason, v1 ∈ π ′(2) is impossible. Namely, if π ′(2) =
{v1} then agent 2 envies 1 and if π ′(2) = {v1,v2} then agent 1 envies 2. Hence we must
have v1 ∈ π ′(1), v3 ∈ π ′(2) and object v2 is either allocated to agent 1 or 2. In both cases, for
π ′ to be envy-free, the following inequalities both have to be fulfilled: ϕ(1)+ϕ(0)≥ ϕ(0)
(trivial) and ϕ(1)≥ 2 ·ϕ(0).
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The third instance I3 has n = 3 and m = 3 (Figure 1, bottom). I3 admits an envy-free
allocation π with π(1) = {v3}, π(2) = {v2} and π(3) = {v1}. Let us consider the corre-
sponding CFD instance J3 = (N3,G3,ϕ(U3)). Since ϕ(1)> 0, in any envy-free allocation
π ′ of I3 each agent must receive a nonempty bundle, hence each one gets a single item.
Further object v1 can be given to only one agent, say agent i. Neither agent 1 nor agent 2
should envy agent i, therefore we must have ϕ(0)≥ ϕ(1). However, this is in contradiction
with inequalities ϕ(1)≥ 2 ·ϕ(0) and ϕ(1)> 0 derived previously. ut

We have a similar result for proportionality:

Proposition 2 There is no mapping ϕ : [0,1]→R+ such that a CCD instance I =(N,G,U )
admits a proportional allocation if and only if the CFD instance J = (N,G,ϕ(U )) admits
a proportional allocation.

Proof For contradiction assume that such a function ϕ exists. We provide in Figure 2 two
different instances of CCD which will lead to a contradiction.

Instance I1 = (N1,G1,U1):

v1 v2 v3 v4

u1(v1) = 1/2
u2(v1) = 0
u3(v1) = 0

u1(v2) = 1/2
u2(v2) = 1/2
u3(v2) = 0

u1(v3) = 0
u2(v3) = 1/2
u3(v3) = 1/2

u1(v4) = 0
u2(v4) = 0

u3(v4) = 1/2

Instance I2 = (N2,G2,U2):

v1 v2 v3 v4

u1(v1) = 1/2
u2(v1) = 0
u3(v1) = 0

u1(v2) = 1/2
u2(v2) = 1/2
u3(v2) = 0

u1(v3) = 0
u2(v3) = 1/2
u3(v3) = 1/2

u1(v4) = 0
u2(v4) = 0

u3(v4) = 1/2

Fig. 2: The CCD instances used in the proof of Proposition 2.

In I1 we have n = 3 and m = 4 (Figure 2, top). I1 does not contain any proportional
allocation since in any valid allocation one agent should receive bundle {v2,v3} and each
agent has a disutility at least 1/2 for this bundle (greater than the proportional share 1/3).

Let us now take the corresponding CFD instance J1 = (N1,G1,ϕ(U1)). No valid
allocation in J1 should be proportional. As the utility of V for each agent is equal to
U = 2(ϕ(0)+ϕ(1/2)), this means that in each valid allocation at least one agent has utility
smaller than 2

3 · (ϕ(0)+ϕ(1/2). Consider the allocation π ′(1) = {v2,v3}, π ′(2) = {v4} and
π ′(3) = {v1}. If π ′ is not proportional then either ϕ(0)+ϕ(1/2) < 2

3 · (ϕ(0)+ϕ(1/2)) or
ϕ(0) < 2

3 · (ϕ(0)+ϕ(1/2)). As the values of function ϕ are nonegative, the former is not
possible, so we have

ϕ(0)<
2
3
· (ϕ(0)+ϕ(1/2)) or, equivalently, ϕ(0)< 2 ·ϕ(1/2). (1)

Further, neither should allocation π ′′(1) = {v1}, π ′′(2) = {v2,v3} and π ′′(3) = {v4} be
proportional. The utility of at least one agent should be too small, so we have that either
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ϕ(1/2) < 2
3 · (ϕ(0)+ϕ(1/2)) or 2 ·ϕ(1/2) < 2

3 · (ϕ(0)+ϕ(1/2)). The second possibility
is equivalent to ϕ(0)> 2 ·ϕ(1/2), which is by (1) impossible. Therefore we have

ϕ(1/2)<
2
3
· (ϕ(0)+ϕ(1/2)) or, equivalently, ϕ(1/2)< 2 ·ϕ(0). (2)

In the second instance I2 we also have n = 3 and m = 4 (Figure 2, bottom). I2 contains
a proportional allocation π with π(1) = {v3,v4}, π(2) = /0 and π(3) = {v1,v2}. For the
corresponding CFD instance J2 = (N2,G2,ϕ(U2)) notice that in any valid allocation at
least one agent receives no more than one object, and hence her utility is either ϕ(0) or
ϕ(1/2). Inequalities (1) and (2) thus imply that J2 does not admit any valid proportional
allocation, leading to a contradiction. ut

The examples and assertions in this section show that in general it is impossible to de-
rive algorithms for finding fair chore allocations from their counterparts for fair allocations
of positive items, and so one can naturally expect that the complexity results of the corre-
sponding problems in the CFD and CCD setting might differ. This motivates our subsequent
complexity analysis.

4 Complete graphs

Note that the classic case (without connectivity requirements) corresponds in our model to
the underlying graph being complete. Then, all the problems studied are hard for the additive
disutility aggregation. The intractability can be proved using a reduction from PARTITION

(see e.g. Demko and Hill 1998).

Proposition 3 ADD-PROP-CCD, ADD-EF-CCD and ADD-EQ-CCD are NP-complete
even for two agents with the same disutility function.

Interestingly, if we use the maximum operator instead of the sum to aggregate the disu-
tilities, the complexity landscape changes. More precisely, suppose now that agents aggre-
gate their disutilities using maximum and consider the greedy algorithm that consists in
allocating each chore v to any agent in argmin j∈N u j(v). Then we claim that this algorithm
computes an allocation π̂ that minimizes maxi∈N umax

i (π(i)) over all allocations. This can be
used to prove the following result:

Theorem 1 λ -MAX-PROP-CCD can be solved in polynomial time for any λ .

Proof Let us first prove that the greedy algorithm described above computes an allocation
that minimizes maxi∈N umax

i (π(i)).
Let π̂ be the obtained allocation. Let v∗ = argmaxv∈V mini∈N ui(v) and let i∗ be the

agent who receives v∗ in π̂ . For each chore v, the disutility incurred for v by the agent who
receives it in π̂ is min j∈N u j(v). Hence, the disutility of each agent in π̂ is bounded above
by maxv∈V mini∈N ui(v) = ui∗(v∗). Let π be another allocation, and let i be the agent who
receives v∗ in π . By definition, ui(v∗)≥ ui∗(v∗), and hence, the highest disutility in π is not
smaller than ui∗(v∗), which is the highest disutility in π̂ , which proves that π̂ is optimal with
respect to the highest disutility of an agent.

Hence an instance of λ -MAX-PROP-CCD is a Yes-instance if and only if the greedy
algorithm computes an allocation where the greatest disutility of an agent is at most λ . ut

Theorem 2 MAX-EQ-CCD can be solved in polynomial time.
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Proof Let I = (G,N,U ) be a CFD instance. We first check by greedy algorithm whether
there exist an allocation giving each agent a bundle (possibly empty) with disutility 0. If this
is not the case, we use Algorithm 1.

Algorithm 1: Computing an equitable allocation for max valuations
Input: I = (G,N,U )
Output: an equitable allocation π or /0

1 π ← ( /0, . . . , /0);
2 foreach η ∈ {ui(v) | i ∈ N,v ∈V}\{0} do
3 Hη ← (N,V,Lη ), a bipartite graph with {i,v} ∈ Lη if and only if ui(v) = η ;
4 if exists a matching M covering N then
5 foreach i ∈ N do
6 π(i)←{v | {i,v} ∈M};
7 if ∀v ∈V not covered by M exists i ∈ N such that ui(v)≤ η then
8 foreach v ∈V \{v′ ∈V | ∃i ∈ N,{i,v′} ∈M} do
9 choose any i such that ui(v)≤ η ;

10 π(i)← π(i)∪{v};
11 return π

12 return /0

Now we claim that Algorithm 1 returns an equitable allocation with a positive common
value of the disutility if and only one there exists one. Let the obtained allocation be π . Then,
obviously, π is complete, since each vertex v is allocated, either on Line 6 or on Line 10.
Moreover, the share of each agent i only contains chores of disutility either equal η (chores
allocated on Line 6) or not exceeding η (chores allocated on Line 10). Hence, ui(π(i))≤ η .
Finally, since the matching M computed on Line 4 covers N, each agent receives at least one
chore of disutility η . Therefore, ui(π(i)) = η for all i ∈ N, which proves that π is equitable.

Conversely, suppose that there is an equitable allocation π that gives disutility η to each
agent. Then, by definition of the maximum based disutility, either η = 0 and we obtained
a desired allocation by the greedy algorithm or η ∈ S = {ui(v) for i ∈ N and v ∈ V} \ {0}.
Moreover, for each i ∈ N, at least one chore vi ∈ π(i) has disutility η . Since π is a valid
allocation, all the vi are distinct. Thus, M = {{i,vi}, i∈N} is a matching of Hη that covers N.
All other vertices are allocated to agents valuing them not more than η (otherwise π would
not be equitable), which proves that condition of Line 7 is satisfied, and that Algorithm 1
returns allocation π , which is equitable.

The size of set S (hence the number of iterations in the global loop) is upper-bounded by
n×m. For each iteration, graph Hη has m+n vertices and at most n×m edges. A maximum
cardinality matching in a bipartite graph with p vertices and q edges can found by Hopcroft-
Karp algorithm (Schrijver 2003) in time O(

√
p q), which in our case gives O(mn

√
m+n)

and the rest of the loop just runs through the chore-agent pairs, hence its complexity is
bounded by O(nm). The total complexity of Algorithm 1 is therefore O(n2m2√m+n),
which is polynomial in the input size. ut

By contrast, envy-freeness criterion leads to an intractable problem:

Theorem 3 MAX-EF-CCD is NP-complete even if the underlying graph G is complete.

Before giving the formal proof, we introduce the (2,2)-E3-SAT problem, that will be
used in the next proof, as well as in the main construction in Section 5 and in the proofs of
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Theorem 12. This problem, which has been proved to be NP-complete (Berman et al. 2003),
is defined as follows.

Instance J : A Boolean formula F in Conjunctive Normal Form, such that each
clause in F has size three, and each variable occurs exactly twice unnegated and
exactly twice negated.
Question: Is F satisfiable?

We shall assume that the given formula F as an instance of (2,2)-E3-SAT consists of
clauses C = {c1, . . . ,ct} containing a set of variables X = {x1, . . . ,xs}. We will denote by
L the set of literals in F , i.e., L =

⋃s
j=1{x1

j ,x
2
j , x̄

1
j , x̄

2
j}, where x1

j (resp. x2
j ) denotes the first

(resp. second) positive occurrence of variable x j and x̄1
j (resp. x̄2

j ) denotes the first (resp.
second) negative occurrence of the same variable. Further, Li will denote the set of literals
in clause ci and for any literal ` ∈ L we denote by c(`) the clause containing literal `. Notice
that the structure of the formula implies 3t = 4s and hence s = 3t/4.

Proof (Theorem 3) To prove NP-completeness, we provide a polynomial reduction from
(2,2)-E3-SAT.

For each an instance of (2,2)-E3-SAT, i.e., a formula F that has the structure as de-
scribed above, we construct an instance of MAX-EF-CCD as follows. The set of chores
is V = W ∪Z ∪Z′ ∪Y , where W =

⋃s
j=1 Wj with Wj = {w1

j ,w
2
j , w̄

1
j , w̄

2
j} are literal chores,

Z = {z1,z2, . . . ,zs} are clause chores, Z′ = {z′1,z′2, . . . ,z′s} are dummy clause chores and
Y =

⋃s
j=1 Yj, with Yj = {y1

j ,y
2
j ,y

3
j ,y

4
j} are dummy variable chores. The literal chore corre-

sponding to literal ` ∈ L will be denoted w(`).
We further assume that the set of chores is ordered W1,W2, . . . ,Ws,Z,Z′,Y1,Y2, . . . ,Ys

while the ordering within each subset is the same as the order in which the chores in the
respective subset have been written above. Let β (v) denote the position of a chore v ∈V in
this ordering.

The set of agents is N = B∪B′ ∪P∪Q, where B = {b1,b2, . . . ,bt} are clause agents,
B′ = {b′1,b′2, . . . ,b′t} are dummy clause agents, P = {p1, p2, . . . , ps} are variable agents and
Q =

⋃s
j=1 Q j with Q j = {q1

j ,q
2
j ,q

3
j ,q

4
j} are dummy variable agents.

The disutilities are defined in Table 4, where for each agent we list the chores with
disutilities equal to 0 and to ε , where 0 < ε < 1 is fixed. The disutility of any chore v to
agent who does not have v displayed in this table is equal to β (v).

chores with chores with
agent disutility equal 0 disutility equal ε

bi, i = 1,2, . . . , t zi,{w(`) |` ∈ Li} –
b′i, i = 1,2, . . . , t zi z′i
p j, j = 1,2, . . . ,s w1

j ,w
2
j , w̄

1
j , w̄

2
j –

q1
j , j = 1,2, . . . ,s w1

j , w̄
1
j y1

j
q2

j , j = 1,2, . . . ,s w1
j , w̄

2
j y2

j
q3

j , j = 1,2, . . . ,s w2
j , w̄

1
j y3

j
q4

j , j = 1,2, . . . ,s w2
j , w̄

2
j y4

j

Table 4: Disutilities in the proof of Theorem 3.
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Let us briefly explain how the reduction works before proving that it is correct. Each
variable agent will receive a subset of literal chores that correspond to her variable. Each
dummy variable agent will receive her corresponding dummy variable chore and will envy
the corresponding variable agent as soon as she does not receive a subset of literal chores
containing either two positive literals or two negative literals. Each clause agent will receive
a clause chore as well as at least one literal chore associated with one of her literals. Clause
chores ensure that no variable agent will envy a clause agent. Furthermore, each dummy
clause agent will receive her corresponding dummy clause chore and will envy her corre-
sponding clause agent as soon as she does not receive at least one of her corresponding
literal chores.

Assume first that f is a truth assignment that satisfies all clauses in C. We construct
from f an assignment π as follows. For each variable x j, if x j is false according to f then
π(p j) = {w1

j ,w
2
j}, otherwise π(p j) = {w̄1

j , w̄
2
j}. Furthermore, π(bi) = {zi}∪{w(`), ` ∈ Li

and ` is true in f}. Finally, π(b′i) = {z′i} for i = 1,2, . . . , t and π(qk
j) = {yk

j} for j =
1,2, . . . ,s and k = 1,2,3,4.

Let us first see that π is valid. Clearly, no chore is assigned to more than one agent.
Moreover, no chore remains unassigned, as each chore yk

j ∈ Y is assigned to agent yk
j ∈ Q,

each z′j ∈ Z′ to b′j, each z j ∈ Z to b j and each chore in W that corresponds to a literal ` that is
true according to f is assigned to bc(`) and if it corresponds to a false literal of variable
x j then it is is assigned to agent p j.

Now we argue that π is envy free. Namely, the agents in B∪P receive in π bundles with
disutility 0, so they do not envy. Dummy agents receive bundles with disutility ε . Take a
dummy clause agent b′ ∈ B. She could only envy an agent that receives chore zi, but as this
chore is assigned to agent bi together with at least one chore in W (that corresponds to a
true literal in clause ci), there is no envy. Dummy variable agent q`j ∈Q could envy agents
p j ∈ P, but the bundle π(p j), which is either {w1

j ,w
2
j} or {w̄1

j , w̄
2
j}, contains at least one

chore v such that uqi(v) is a strictly positive integer, hence greater than ε , so there is no envy
here too.

Conversely, suppose that there is a valid assignment π such that no agent envies another
one. In the first part of the proof we use mathematical induction on the reverse ordering β (v)
of the chores in the following way: we take the next chore v and argue that v must belong to
the bundle of a certain agent i. Let us say that agent i was treated.

As the disutility of y4
s is maximum of all chores, if y4

s ∈ π(a) for any agent a 6= q4
s then

a will envy any other agent. Therefore y4
s ∈ π(q4

s ). Now suppose that yk
j ∈ π(qk

j) for each
yk

j ∈ Y such that β (yk
j)> u. Take yk

j such that β (yk
j) = u. If yk

j ∈ π(a) for some agent a 6= qk
j

then a will envy any other agent that was not treated yet.
Similarly, by induction for i = t, t− 1, . . . ,1 we show that z′i ∈ π(b′i). As the disutility

of z′t is maximum of all chores that have not yet been assigned, if z′t ∈ π(a) for some agent
a 6= b′t then a will envy any other agent in N \Y . Therefore z′i ∈ π(b′i). Now suppose that
z′i ∈ π(b′i) for each i > k. Take z′k. If z′k ∈ π(a) for any agent a 6= b′k then a will envy any
agent not treated so far.

By an analogical inductive argument we show that zi ∈ π(b′i) or zi ∈ π(bi) for each
i = t, t − 1, . . . ,1 because otherwise the agent that gets this chore will envy any untreated
agent (for example, an agent in P).

Now we know that the disutility of each agent qk
j in π is at least ε and qk

j does not
envy agent p j. So we must have that either {w1

j ,w
2
j} ⊆ π(p j) or {w̄1

j , w̄
2
j} ⊆ π(p j) for each

j = 1,2, . . . ,s. Let us say that x j is false in the former case and that x j is true in the latter
case. Finaly, so as no agent b′i envies bi, we get that π(bi) must contain at least one chore
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w(`) for ` ∈ Li, and due to the truth values and assignment of chores in W defined above,
this chore must correspond to a true literal in clause ci. Hence we obtain an assignment of
truth values that makes F true. ut

5 Paths

Even if the underlying graph is restricted to be a path then all the considered chore division
problems are intractable, as we now show. All the proofs in this section are based on the
same construction starting from an instance F of (2,2)-E3-SAT.

For any fixed integer ρ ≥ 1, we will construct an instance Iρ of CCD with the set
of chores V = Y ∪Z ∪D where Y = {y1, . . . ,yt} are clause chores, Z = ∪s

j=1{z1
j ,z

2
j , z̄

1
j , z̄

2
j}

are literal chores and D = {d1, . . . ,ds} are variable chores. The number of chores is thus
m = 5s+ t. The graph G defining the neighborhood relation between chores (illustrated in
Figure 3) has edges:

– (yi,yi+1) for i = 1,2, . . . , t−1;
– (yt ,z1

1);
– (z1

j ,z
2
j);(z

2
j ,d j),(d j, z̄1

j),(z̄
1
j , z̄

2
j) for j = 1,2, . . . ,s;

– (z̄2
j ,z

1
j+1) for j = 1,2, . . . ,s−1.

y1 . . . yt z1
1 z2

1 d1 z̄1
1 z̄2

1 z1
2 z2

2 d2 . . . z̄1
s z̄2

s

Fig. 3: The graph for Lemma 1

The set of agents in Iρ is N = B∪P∪Q∪R, where B = ∪s
j=1{b1

j ,b
2
j , b̄

1
j , b̄

2
j} are literal

agents, P= {p1, . . . , ps}, Q= {q1, . . . ,qs} are variable agents and R= {r1, . . . ,rρ(5s+t)−6s+1}
are dummy agents (observe that ρ(5s+ t)−6s+1 > 0 for any ρ ≥ 1 since 3t = 4s implies
t > s). So the total number of agents in I is n = ρ(5s+ t)+1.

Let us remark that each literal `∈ L from formula F has in Iρ its ‘corresponding’ chore
in Z and agent in B; they will be denoted by z(`) and b(`), respectively.

For each agent a∈N her disutility is 0 for some specific chores and the total disutility of
1 for agent a is distributed uniformly among the remaining chores, to achieve normalization.
The details are given in Table 5.

chores with disutility
agent disutility equal 0 of the remaining chores

b(`), ` ∈ L z(`),yc(`) 1/(5s+ t−2)
p j, j = 1,2, . . . ,s z1

j ,z
2
j , z̄

1
j , z̄

2
j 1/(5s+ t−4)

q j = 1,2, . . . ,s d j 1/(5s+ t−1)
r j, j = 1,2 . . . ,ρ(5s+ t)−6s+1 – 1/(5s+ t)

Table 5: Disutilities for the construction in Section 5.
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Lemma 1 If formula F is satisfiable then Iρ admits a valid allocation π such that ua(π(a))=
0 for each agent a ∈ N. If F is not satisfiable then for any valid allocation π there exists an
agent whose bundle has disutility greater than ρ/n.

Proof Assume first that f is a truth assignment of F that satisfies all clauses in C. We
construct from f a valid assignment of chores in Iρ as follows. Assign each d j to q j. For
each variable x j assign agent p j the bundle {z1

j ,z
2
j} (the two chores are adjacent, so the

bundle is connected) and the agents b̄1
j , b̄

2
j objects z̄1

j and z̄2
j , respectively if x j is true and

assign agent p j the bundle {z̄1
j , z̄

2
j} (again, this bundle is connected) and the agents b1

j ,b
2
j

chores z1
j and z2

j , respectively if x j is false. Finally, choose the first true literal ` ∈ Li in
each clause ci ∈C and assign to the corresponding literal agent b(`) chore yi. Each agent in
R is assigned an empty bundle, and also some agents b(`) that correspond to true literals
may receive an empty bundle. By checking Table 5, it is easy to see that each agent receives
either nothing or a bundle whose disutility is 0, everybody receives a connected piece (if
any) and that all chores are assigned.

Conversely, suppose that there is a valid assignment π of chores in Iρ such that ev-
erybody receives a bundle with disutility at most ρ/n. Note first that n = ρ(5s + t) + 1
implies ρ = n−1

5s+t <
n

5s+t , which in turn implies ρ

n < 1
5s+1 . As any nonzero disutility is at

least 1/(5s+ t) > ρ/n this implies that each agent’s bundle is either empty or has disutil-
ity 0. Therefore, chore d j must be assigned to agent q j. Further, for each i, chore yi must
be assigned to some agent b(`) ∈ B that corresponds to a literal ` ∈ Li contained in clause
ci. We now show that no two literal agents, corresponding to a literal and its negation, can
both receive a clause chore of Y . For contradiction, suppose that for some j, agents bk

j as
well as b̄k′

j (see the first row of Table 5), for k,k′ ∈ {1,2} are assigned some clause chores
in Y . This means that chores zk

j as well as z̄k′
j must both be assigned to agent p j since she

is the only agent, in addition to bk
j and b̄k′

j , who have a disutility 0 for these chores, and
agent bk

j (resp. agent b̄k′
j ) cannot take zk

j (resp. z̄k′
j ) together with a chore of Y without either

violating connectivity constraints or receiving a bundle of disutility greater than 0 (we can
assume without loss of generality that literal x1

1 is not part of clause ct ). But as chore d j is
assigned to agent q j in any valid assignment where everybody has disutility 0, agent p j gets
a disconnected piece, which is a contradiction.

We now construct a truth assignment f for F as follows. For each clause c j, the literal
agent who receives chore y j will define the truth value of its corresponding variable: if it is
bk

i for some i ∈ {1, . . . ,s} and k ∈ {1,2} then variable xi is set to true, and if it is b̄k
i for

some i ∈ {1, . . . ,s} and k ∈ {1,2} then variable xi is set to false. Because no two literal
agents, corresponding to a literal and its negation, can both receive a chore of Y , a variable is
not both set to true and false. Furthermore, this truth assignment satisfies all clauses of
C. Finally, the truth value of the variables which have not been considered are set arbitrarily
to complete the truth assignment. ut

Lemma 1 directly implies the following result:

Theorem 4 For any ρ ≥ 1 the problem of deciding whether a given instance of CCD admits
a ρ-proportional valid allocation is NP-complete, even if G is a path. In particular, ADD-
PROP-CCD is NP-complete.

As m < n in Iρ , at least one agent gets nothing. Hence for each ρ ≥ 1 in any ρ-envy-
free or ρ-equitable allocation everybody has to get a bundle with disutility 0. So Lemma 1
directly implies also the following assertions.
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Theorem 5 For any ρ ≥ 1 the problems of deciding whether a given instance of CCD
admits a ρ-envy-free or ρ-equitable valid allocation are NP-complete, even G is a path. In
particular, problems ADD-EF-CCD and ADD-EQ-CCD are NP-complete.

For the maximum-based disutility extension, let us change the construction in the be-
ginning of this section slightly. Namely, each positive disutility of an item will be set to 1.
The same arguments as above are still valid, so we get the following assertion.

Theorem 6 MAX-EF-CCD, MAX-EQ-CCD and λ -MAX-PROP-CCD for any λ ∈ [0,1)
are NP-complete if G is a path, even in the binary case.

6 Stars

Let ω denote the center of the star. As each agent has to get a connected bundle, only the
agent that is assigned ω can get more than one chore. According to the fairness criterion
used, there are necessary conditions that each agent has to fulfill, so as to be entitled to be
assigned ω; we shall call such an agent central. If is no agent fulfills these conditions then
there is no valid allocation with the desired properties. If there exists such an agent, we still
have to decide about the assignment of the leaves to the other agents. For this graph topology
we first present efficient algorithms and then proceed to hard cases.

6.1 Easy cases

All the easy cases use a similar idea, borrowed from Bouveret et al. (2017). For each agent
we check whether she can be the central agent. The central agent gets as many leaves as
possible, and the assignment of the other leaves to other agents is found by using an effi-
cient matching algorithm on bipartite graphs. Hence, all the problems studied in this section
will have a similar complexity, which is determined by the matching algorithm used. The
bipartite graph constructed by the algorithm has O(m+ n) vertices and O(mn) edges. The
Hopcroft-Karp matching algorithm applied to a graph with p vertices and q edges runs in
O(q
√

p) steps, which in our case means O(mn
√

m+n) steps. Moreover, we might need to
repeat the procedure for each agent, and that leads an overall complexity of O(mn2√m+n).

Theorem 7 ADD-PROP-CCD is solvable in polynomial time if G is a star.

Proof First, an agent i can be central in a proportional allocation only if ui(ω) ≤ 1/n. Let
us check for each such agent i whether there is indeed a proportional valid allocation π

assigning ω to i.
To this end, we create a bipartite graph H = (Z,Z′,L) with Z = N \ {i}, Z′ = V \ {ω}

and { j,v} ∈ L if and only if u j(v)≤ 1/n; the weight of this edge is ui(v).
We find a maximum weight matching M in H. A proportional valid allocation with i

as a central agent exists if and only if the weight of M is at least (n− 1)/n. If this is the
case, assign the objects to agents in Z according to M and all the unmatched leaves plus the
central vertex ω to i. ut

A similar approach can be used to determine whether there is an allocation giving all
agents a bundle where each item has a disutility at most λ . The following result for λ = 0
will be used in some of the subsequent algorithms.
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Theorem 8 If G is a star then the problem λ -MAX-PROP-CCD is polynomial for any λ .

Proof To be able to decide the existence of such an allocation, let us first observe that an
agent i can be central only if ui(ω) ≤ λ . For such an agent i let Xi = {v ∈ V ;ui(v) ≤ λ}.
Now we create the bipartite graph H = (Z,Z′,L) where Z = N\{i}, Z′ =V\Xi and { j,v} ∈ L
if u j(v) ≤ λ . Clearly, an allocation proving that the given instance is a Yes-instance of λ -
MAX-PROP-CCD where i is the central agent exists if and only if H admits a matching M
that covers all vertices in Z′. ut

Theorem 9 MAX-EQ-CCD is solvable in polynomial time if G is a star.

Proof Using Theorem 8, we can decide in polynomial time whether there is a valid alloca-
tion such that everybody gets disutility 0. If this is the case, then we are done. If it is not, then
we will run through all possible values η and determine, for each of them, whether there is a
valid allocation such that everybody gets disutility η . As the individual disutility aggregator
is the maximum, the only possible values for η are those among the set {ui(v) | i∈N,v∈V}.
Hence there are at most m×n possibilities for η .

An agent i can be a central agent in an equitable allocation with all disutilities equal to
η only if ui(ω)≤ η . We will handle the two cases ui(ω) = η and ui(ω)< η separately.

(i) ui(ω) = η . We create a flow network H = (Z,L) as follows. Its vertices are the source
σ , sink τ and one vertex for each agent and one vertex for each leaf of G. The source is
connected to each agent vertex; capacities of arcs (σ , j) for j 6= i are 1, capacity of arc (σ , i)
is m−n. The choice of these capacities follows from the fact that each noncentral agent has
to be assigned exactly one vertex and the central agent the remaning m−n vertices.

There is an arc of capacity 1 between the vertex corresponding to agent j 6= i and the
vertex corresponding to leaf v if and only if u j(v) = η and between i and the vertex corre-
sponding to leaf v if and only if ui(v)≤ η . Each vertex corresponding to a leaf is connected
to τ , the capacities of these arcs are also 1. An allocation where each agent has disutility η

for her bundle exists if and only if there is a flow of size m−1 in this network, namely, the
leaves are allocated to agents according to the agent-leaf arcs with nonzero flow.

(ii) ui(ω)< η . we have moreover to ensure that agent i gets at least one leaf v such that
ui(v) = η . The above construction of the flow network will be modified in the following
way. Agent i will not be connected with leaves directly, but there will be two more vertices
r1,r2 and the following arcs: (i,r1) with capacity m and arcs (r1,v) for each leaf v such
that ui(v) = η . Further, there is arc (i,r2) with capacity m− n− 1 and arcs (r2,v) for each
leaf v such that ui(v) < η . The construction of the flow network is shown in Figure 4. The
choice of the capacities of the arcs outgoing from vertex i ensures that the arc (i,r1) and
consequently also arc (r1,v) for some v with ui(v) = η will carry a nonzero flow, hence
agent i will be assigned at least one leaf for which she has disutility equal η .

Again, an allocation where each agent receives a bundle of disutility η and where i is
the central agent exists if and only if there is a flow of size m−1 in this network. ut

As we shall see later, the problem of deciding the existence of an envy-free valid alloca-
tion in the additive case is in general NP-complete. However, there is a plausible efficiently
solvable special case. We say that agents’ preferences are strict on chores if ui(v) 6= ui(w)
for any agent i and any pair of distinct chores v,w.

Theorem 10 ADD-EF-CCD is solvable in polynomial time if G is a star and the agents’
preferences are strict on chores.
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η

Fig. 4: All the thin arcs have capacity equal 1. Capacity of thick arcs is shown next to them. The condition
for dotted arcs to be included is shown next to them.

Proof If m < n then necessarily some agent gets nothing and so as not to create envy each
agent has to get a bundle with disutility 0. Since preferences are strict, this is only possible if
each agent gets at most one vertex, namely the one where she has disutility 0. We can easily
verify whether this happens by matching techniques.

Now let us proceed to the case when agents receive positive disutility. We shall in turn
check for each agent i whether she can be the central agent. To this end, order all the vertices
in V according to i’s disutility increasingly (we might possibly rename the vertices in G)

ui(v1)< · · ·< ui(vm−n+1)< ui(vm−n+2)< · · ·< ui(vm) (3)

and notice that i will receive exactly m−n+1 vertices. Moreover, i must receive the bundle
{v1,v2, . . . ,vm−n+1} that because otherwise another agent, say j, will receive one of these
chores (and only this one) and i will envy j. The necessary conditions a central agent i must
therefore fulfill are:

(i) vertex ω must be among the vertices v1,v2, . . . ,vm−n+1 and
(ii) ∑

m−n+1
k=1 ui(vk)≤ ui(vm−n+2)

These conditions imply that when assigned the bundle X = {v1,v2, . . . ,vm−n+1}, agent i will
not envy any other agent. We still have to ensure no envy among other agents.

Let us construct the bipartite graph H = (Z,Z′,L) with Z = N\{i}, Z′ = V\X and
{ j,v} ∈ L if the following inequality is fulfilled:

u j(v)≤ min{{u j(v′);v′ ∈ Z′},uadd
j (X)}. (4)

Finally, there exists in I an envy-free assignment where agent i is the central agent if and
only if H admits a perfect matching M. Namely, agent i is assigned bundle X and the other
agents chores according to M. ut

The method described in the proof of the previous theorem can easily be adapted also
for the maximum based disutility aggregation. The only difference follows from using max-
imum (and hence the disutility of just one vertex) in the computation of the disutility of
agent’s bundle instead of the sum.

Theorem 11 MAX-EF-CCD is solvable in polynomial time if G is a star and the prefer-
ences of agents are strict on chores.
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Proof When checking whether agent i can be central, after we permute the vertices of G
according to i’s disutility increasingly, it is easy to see that agent i must receive her m−n+1
most favorite chores, and it suffices to check just condition (i) to prevent her to envy another
agent. Further, in the construction of the bipartite graph H condition (4) should be replaced
by

u j(v)≤ min{{u j(v′);v′ ∈ Z′},umax
j (X)} (5)

and the rest of the proof follows. ut

6.2 Hard cases

When the underlying graph is a star, the only intractable problems concern envy-freeness
and equitability, when the disutilities are additive, as we will see now.

Theorem 12 ADD-EF-CCD is NP-complete even if the underlying graph G is a star.

Proof To prove the NP-completenes, we provide a reduction from (2,2)-E3-SAT. So we
start by a boolean formula F .

We construct an instance of ADD-EF-CCD with m = 7s+2 chores and n = 2s+ t +2
agents defined as follows. The set of chores is V = Y ∪ Z ∪{ω,d}, where ω denotes the
center of the star G, Y =

⋃s
i=1{yi, ȳi, ỹi} are variable chores and Z =

⋃s
j=1{z1

j ,z
2
j , z̄

1
j , z̄

2
j} are

literal chores. Observe that each literal ` ∈ L has its corresponding chore which will be
denoted by z(`).

The set of agents is N = B∪P∪Q∪{e,r}, where B = {b1, . . . ,bt} are clause agents and
P = {p1, . . . , ps}, Q = {q1, . . . ,qs} are variable agents.

The disutilities are defined as follows.
If a = bi ∈ B is a clause agent then:

ubi(v) =
{

0 if v = d or v = z(`) for some ` ∈ Li
1/(7s−2) otherwise.

If a = pi ∈ P then:

upi(v) =

 0 if v = yi or v = z̄ j
i for some j ∈ {1,2}

ε if v = ỹi or v = d
(1− ε)/(7s−3) otherwise,

where ε is such that ε < (1−ε)/(7s−3). Notice that this inequality implies ε < 1/(7s−2).
If a = qi ∈ Q then:

uqi(v) =

 0 if v = ȳi or v = z j
i for some j ∈ {1,2}

ε if v = ỹi or v = d
(1− ε)/(7s−3) otherwise.

If a = e then:

ue(v) =
{

1/(s+1) if v = d or v = ỹi for some j ∈ {1, . . . ,s}
0 otherwise.

If a = r then:

ur(v) =
{

0 if v = d
1/(7s+1) otherwise.
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Assume first that f is a truth assignment that satisfies all clauses in C. We construct from
f a valid assignment π of chores as follows. For each variable xi, if xi is true, assign ỹi and
ȳi to pi and qi respectively, and if xi is false, assign yi and ỹi to pi and qi. Furthermore,
for each clause ci pick literal ` ∈ Li which is true and assign z(`) to bi. Finally, assign d to
r, and the remaining chores to e.

Now we check that this allocation is envy-free. First, no agent whose disutility in π is
equal 0 can envy any other agent. This is clearly the case of agents r and agents in B. Agent
e receives many chores, but not chore d and no chore of the form ỹi (as these are assigned
either to agent pi or to agent qi), so her disutility is also equal to 0. It remains to show that
variable agents in P∪Q do not envy. Take agent pi. She is assigned either chore yi (and her
disutility is thus 0, and so we do not need to deal with this case any more) or chore ỹi, for
which she has disutility ε . Therefore she could envy an agent who receives only chores from
the set PT

i = {yi, z̄1
i , z̄

2
i }. However, this happens when variable xi is true in f . In this case,

all the chores from PT
i with many other chores, including ω , are assigned to agent e. This

means upi(π(e))> ε and so agent pi does not envy anybody. The argument for agents in Q
is similar.

Conversely, suppose that there is a valid assignment π of chores such that no agent envies
another one. Since ỹi provides a non-zero disutility to every agent, no agent can receive an
empty bundle; otherwise each agent that receives chore ỹi will be envious. Furthermore, only
the central agent can receive strictly more than one chore, and, as a consequence, this central
agent must receive exactly 5s−t+1 chores (otherwise some chores will be left unassigned).
We show by contradiction that the central agent should be e. Assume by contradiction that
the central agent is not e. This central agent will receive a bundle of chores of size 5s− t+1,
and since the number of chores for which an agent has disutility at most ε is never larger
than 5 (except for agent e for which it is 6s+ 1), then at least two chores with the highest
disutility are assigned to the central agent. Hence the central agent will envy any other agent
receiving just one chore, a contradiction. Therefore, only e can be the central agent.

Suppose that e receives a non-zero disutility. Then she will envy any other agent receiv-
ing either one chore other than d or one ỹi or no chore at all. It thus means that d and each
chore ỹi must be assigned to some other agents.

If d is not assigned to r then r will envy the agent who receives it. Hence, d is assigned
to r in π . This in turn implies that each agent bi should receive chore z(`) for some ` ∈ Li.
This also implies that each variable agent should receive a chore for which she has disutility
0 or ε , which means that chore ỹi is assigned either to agent pi or to qi.

We now construct truth assignment f as follows. If ỹi is assigned to pi in π then set xi
to be true, and otherwise (i.e. ỹi is assigned to qi) set xi to be false. We will show that f
satisfies each clause ci. Let ` be the literal of ci such that z(`) is assigned to bi. Assume that
` is a positive literal of variable x j (the negative case can be treated in a similar way). If ỹ j
is assigned to agent qi then she will envy agent bi, leading to a contradiction. Therefore, ỹi
is assigned to agent pi, xi is set to true and clause ci is true. ut

Theorem 13 MAX-EF-CCD is NP-complete even if the underlying graph G is a star.

Proof The reduction is almost the same as the one presented for Theorem 12 except that
the disutility provided by chore ω (the center of the star) is set to 1 for all agents except for
agent e, and the disutility of agent e for each chore for which she has disutility 1/(s+1) is
set to 1. Note first that in that case, no agent except for agent e can receive chore ω without
envying the other agents since ω is the only chore providing a disutility of 1. Therefore, in
any envy free allocation chore ω is assigned to agent e. It is easy to check that all the other
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arguments provided in the proof of Theorem 12 hold in this new construction using max
aggregator. ut

The equitability criterion also leads to an NP-complete problem.

Theorem 14 ADD-EQ-CCD is NP-complete if G is a star.

Proof We shall provide a polynomial reduction from the following version of the NP-
complete problem PARTITION (Garey and Johnson 1979), Problem SP12. The symbol [p]
denotes the set {1,2, . . . , p}.

Instance J : A set {ai,bi; i ∈ [p]} of integers such that ∑i∈[p](ai +bi) = 2K.
Question: Does there exist a partition (P,P′) of [p] such that ∑i∈P ai+∑i∈P′ bi = K?

Let us construct an instance I of ADD-EQ-CCD as follows. The set of chores is V =
{ω,d}∪V ′, where V ′ = {vi,wi; i ∈ [p]}. Chore ω is the center of the star, the other chores
are its leaves. The set of agents is N = { j0, jp+1}∪N′, where N′ = { ji; i ∈ [p]}. Note that
there are 2p+2 chores and p+2 agents. The disutilities of agents are as follows and it can
be easily checked that they are all normalized.

u j0(v) =


1/6 for v = ω

1/2 for v = d
ai/(6K) for v = vi; i ∈ [p]
bi/(6K) for v = wi; i ∈ [p]

u jp+1(v) =
{

1/3 for v = d
2/(6p+3) otherwise

and, finally, for i ∈ [p]

u ji(v) =
{

1/3 for v ∈ {ω,vi,wi}
0 otherwise

Now suppose that (P,P′) is a partition witnessing that J is a yes instance; let us de-
fine a valid assignment in the following way. π( j0) = {ω}∪ {vi, i ∈ P}∪ {wi, i ∈ P′} and
π( jp+1) = {d}. Further, π( ji) = {vi} if i ∈ P′ and π( ji) = {wi} if i ∈ P. It is easy to see that
all vertices are assigned, each agent j 6= j0 has one leaf with disutility 1/3 and the bundle of
j0 has disutilty also 1/3 thanks to the properties of partition (P,P′).

Conversely, suppose that I admits a valid equitable assignment π such that each agent
gets the same disutility equal to η . First, let us realize that η 6= 0, as the agent who receives
the central vertex ω has a positive disutility. Further, η cannot be strictly greater than 1/3.
Namely, as exactly one agent can be assigned ω (and hence more than one chore), we would
not be able to give to each agent in N′ a piece with disutility greater than 1/3. Thus, each
agent in N′ can receive only one chore and this means that their disutility is either 0 or 1/3.
Therefore η = 1/3. This also immediately implies that π( jp+1) = {d}. Furthermore, the
central agent is j0 since the central agent should receive p+ 1 chores and j0 is the only
agent who can have a disutility of at most 1/3 for such a large bundle of chores. Therefore,
each agent ji ∈ N′ receives either vi or wi and agent jp+1 receives chore d. This means
that π( j0) = {ω}∪{vi; i ∈ P}∪{wi; i ∈ P′} where (P,P′) is a partition of [p]; moreover, as
disutility j0 derived from π( j0) is equal to 1/3, we must have

∑
i∈P

ai/(6K)+ ∑
i∈P′

bi/(6K) = 1/6
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which implies
∑
i∈P

ai + ∑
i∈P′

bi = K

and hence (P,P′) is a partition of [p] verifying that J is a yes instance of PARTITION. ut

7 Conclusion and open problems

In this paper we studied the computational complexity of the problem of finding a fair al-
location of nondisposable undesirable items (chores) with the additional requirement that
each agent has to receive a bundle of chores that is connected in the graph representing the
relationship between items.

We have demonstrated that the chore division problems and their corresponding “dual”
fair division problems do not necessarily have solutions that directly translate from one
context to another, moreover, the computational complexity of the corresponding problems
can differ.

We proposed polynomial algorithms for some existence problems and showed that other
problems are NP-complete. Moreover, our construction for paths even leads to multiplica-
tive inapproximability results.

Notice that Suksompong (2017) considered fair allocations on paths with contiguous
bundles that are approximately fair up to an additive factor. His constructions could be, with
very minor modifications, applied also in the chore-division problem. However, we do not
know how to construct additively approximately fair valid allocations for the other simple
graph, the star.

Other natural open questions can be thought of. Is there any graph structure that could
separate the polynomial problems from the intractable ones for various fairness criteria?
When no valid fair allocation exists, one can think of some relaxations of the connectivity
constraints. One could for example ask that the share of each agent should consist of not
more than k disconnected pieces or that each diameter should be bounded.

Further, we have omitted the recently introduced fairness criteria maximin share guar-
antee and envy-freeness up to one good. We believe that they may lead to some more inter-
esting results.
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V. Bilò, I. Caragiannis, M. Flammini, A. Igarashi, G. Monaco, D. Peters, C. Vinci, and W. S. Zwicker. Almost
envy-free allocations with connected bundles. ArXiv e-prints, 2018. ArXiv:1808.09406.

A. Bogomolnaia, H. Moulin, F. Sandomirskiy, and E. Yanovskaya. Competitive division of a mixed manna.
Econometrica, 85(6):1847–1871, 2017.

S. Bouveret, Y. Chevaleyre, and N. Maudet. Fair allocation of indivisible goods. In F. Brandt, V. Conitzer,
U. Endriss, J. Lang, and A. D. Procaccia, editors, Handbook of Computational Social Choice, chapter 12.
Cambridge University Press, 2015.
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