
Fair division of indivisible goods under risk

Charles Lumet Sylvain Bouveret
Onera DTIM. 2, avenue Édouard Belin
31055 Toulouse Cedex 4 – FRANCE

first.last@onera.fr

Michel Lemaı̂tre

Abstract
We study the problem of fairly allocating a set of
indivisible goods to a set of agents having additive
preferences. More precisely, we consider the prob-
lem in which each object can be in two possible
states: good or bad. We further assume that the
actual object state is not known at allocation time,
but that the decision-maker knows the probability
for each object to be in each state. We propose
a formal model of this problem, based on the no-
tions of ex-ante and ex-post fairness, and we pro-
pose some algorithms aiming at computing optimal
allocations in the sense of ex-post egalitarianism,
the efficiency of these algorithms being tested on
random instances.

1 Introduction
The problem of allocating a set of indivisible goods to a set of
agents arises in a wide range of applications including, among
others, auctions, divorce settlements, frequency allocation,
airport traffic management, fair and efficient exploitation of
Earth observing satellites [8]. In many such real-world prob-
lems, one needs to find fair solutions where fairness refers to
the need for compromises between the agents (often antago-
nistic) objectives.

While most works (see e.g. [4] for a survey on multiagent
resource allocation) on fair division typically assume that the
agents are able to evaluate their preferences (ranking, utility
function) over the sets of objects at stake before the begin-
ning of the allocation process, it might not always be the case,
and the actual value (or state) of some given objects may de-
pend on exogenous factors and not be known by the agents
beforehand. This is the case for example in the fair share of a
constellation of Earth observing satellites [8], as the weather
conditions on a given area, which are only known with a given
probability when the allocation is decided, can dramatically
reduce the quality of the observation, and, in the end the util-
ity of an observation for an agent.

Uncertainty (or, more precisely, risk) issues in collective
decision making have been studied for example by Myerson
[10] and more recently Gajdos and Tallon [5]. However, to
the best of our knowledge, this problem has never been con-
sidered from a computational point of view, except within the

combinatorial auctions framework, when one wants to mini-
mize the influence in terms of revenue of potential bids with-
drawals [7]. Our work aims at bridging this gap.

In this article, we make three main assumptions. (i) The al-
location is centralized, that is, it is decided and computed by a
central benevolent authority, according to the agents’ individ-
ual preferences. (ii) Each object can only be in two possible
conditions (good or bad). The actual condition of each object
is only known with a given probability when the allocation
is decided, but is known for sure when the objects are actu-
ally allocated to the agents. (iii) The agents have non exoge-
nous additive preferences over the objects. In other words, the
preferences of each agent are represented by a set of weights,
standing for the utility (or satisfaction) she enjoys for each
single object. The utility of an agent for a subset of objects S
is then given by the sum of the weights of all the objects in
S that are in good condition (we assume that a bad object has
absolutely no value for the agent who receives it).

Even if this framework seems restrictive, we advocate that
it is worth studying for the following reasons. Firstly, the
additivity assumption is very natural as soon as preferences
over sets of objects have to be represented in a compact way.
Secondly, in many real-world problems, uncertainty can be
defined “object-wise” and thus can be very naturally mod-
eled as we suggest. Finally, as we show in this paper, despite
its apparent simplicity, our framework raises non trivial com-
putational issues.

This article is structured as follow. In Section 2, we in-
troduce our framework for fair division of indivisible goods
under risk. In Section 3, we mainly focus on the computation
of optimal or good ex-post egalitarian allocations and we pro-
pose two algorithms to solve this problem. Finally, we com-
pare the efficiency of these algorithms on random instances
in Section 4.

2 Framework
2.1 Model
In the following, we use lower case bold font to represent
vectors and upper case bold font to represent matrices.

A finite set of indivisible objects O = {1, . . . , l} must be
allocated to a finite set of agents A = {1, . . . , n}. An al-
location decision (or simply allocation) is a vector of shares
π = 〈π1, . . . , πn〉 where πi ⊆ O, and j ∈ πi iff object j

has been given to agent i. The set of feasible decisions is
D = {π, i 6= i′ ⇒ πi ∩ π′i = ∅}. We further denote by
π0 = O \

⋃
i∈A πi the set of non allocated objects.

Each object can be either in good condition or in bad con-
dition. The objects conditions are known only after the allo-
cation has been made, but the decision-maker is nevertheless
given probabilistic information: to each object j ∈ O, is at-
tached a binary random variable Xj which can take value in
{good, bad}. We assume the existence of a vector p ∈ [0; 1]l
giving each object probabilities pj = P(Xj = good), and
pj = 1 − pj = P(Xj = bad). Variables Xj , j ∈ O are
assumed to be independent.

Each state of nature in the problem is therefore character-
ized by the set of objects in good condition (the other ones
being in bad condition). Let S = {1, . . . , k} be the set of the
possible states of nature (where k = 2l) ; to each state s of
this set, one can relate the set good(s) ⊆ O of objects in good
condition when state of nature s happens. S is provided with
a probability distribution, fully characterized by coefficients
pj .

∀s ∈ S, Pr(s) =
∏

j∈good(s)

pj
∏

j /∈good(s)

pj (1)

Computing an acceptable allocation for such a problem
requires the decision-maker to know about the tastes of the
agents for the objects. These preferences are numerically ex-
pressed by the agents in the form of utility functions, which,
for each state s, map each decision π to a numerical value
ui,s(π) conveying the attractiveness of the decision for the
agent i if this state of nature happens. This utility is built upon
the specification of weights for each agent to each object ; the
weight wij represents the intensity of agent i’s preference for
object j ; we assume that an agent utility for a decision and
a state of nature are given by the sum of the weights of the
objects in good condition received by said agent: agents have
additive preferences over the objects, and each object in bad
condition gives no extra utility to the agent it is allocated to.

∀i ∈ A,∀s ∈ S, ui,s(π) =
∑

j∈good(s)∩πi

wij (2)

Let us now define an instance of the problem studied in this
article.

Definition 1 (Resource allocation problem under risk)
An instance of a resource allocation problem under risk is a
tuple (A,O,p,W), whereA = {1, . . . , n} is a set of agents,
O = {1, . . . , l} is a set of objects, p ∈ [0; 1]l expresses the
probability for each object to be in good condition, and W is
the n-lines l-columns matrix of weights given to the objects
by the agents.

Table 1 shows an example of a resource allocation prob-
lem under risk, with the probabilities of each possible state
of nature (line 2) and utility profiles associated with a given
decision (lines 3 and 4).

2.2 The timing effect
For a given state of nature, a decision quality depends on
the level of satisfaction of all the agents. A classical way

to define this quality is to aggregate the agents utility vector
with a commutative and increasing collective utility function
M : (R+)n → R+, which measures social welfare. Two
classical choices are M =

∑
and M = min, which have

been at the root of classical utilitarianism on the one hand,
and egalitarianism on the other hand. The latter promotes eq-
uity, since best decisions are those which satisfy the most the
poorest agent, whereas the former promotes a kind of effi-
ciency which aims at giving objects to the agents producing
the most utility, without any concern for equity. A general
survey on collective utility functions can be found in [9]. In
the following we will write Mi∈Aui for M(u).

In the same manner, we aggregate agent utilities in the
different states of nature using the classical expected utility
(even if other choices could be made).

In order to map a unique numerical value to each deci-
sion, and depending on whether aggregation is first made over
states of nature and then over agents or the other way around,
we obtain two different functions [6; 10] : acu : D → R+,
defined in (3), is called ex-ante collective utility and pcu :
D → R+, defined in (4) is called ex-post collective utility.

∀π ∈ D, acu(π) = M
i∈A

(∑
s∈S

Pr(s) · ui,s(π)

)
(3)

∀π ∈ D, pcu(π) =
∑
s∈S

Pr(s) ·
(

M
i∈A

ui,s(π)
)

(4)

Harsanyi [6] shows that the only aggregation functions
for which ex-post and ex-ante utilities coincide are linear or
affine, which entails that, on the contrary, each equity-prone
collective aggregation function will give different ex-ante and
ex-post utilities. There therefore exists a conflict – known as
timing effect – between the ex-post approach on the one hand,
which considers the expected social welfare and the ex-ante
approach on the other hand, which considers the social wel-
fare measured with expected utilities.

2.3 Ex-ante versus ex-post utility
Even if no link exists a priori between ex-post and ex-ante
utilities for a given decision, one can show that, under some
mild assumption on the collective aggregation function, the
ex-ante collective utility is always greater than the ex-post
one.

This is especially true in the egalitarian case, where Propo-
sition 1 is a direct application of the triangular inequality for
function min.
Proposition 1 Let M = min be the egalitarian collective
aggregation operator. Then, the following inequality stands:

∀π ∈ D, pcu(π) ≤ acu(π) (5)

3 Computing ex-ante and ex-post optimal
allocations

In this section, we will deal with the problems of finding an
allocation maximizing ex-ante and ex-post utilities. In the fol-
lowing, we will restrict to the classical egalitarian criterion –

s ∅ {1} {2} {3} {4} {1, 2} {1, 3} . . . {2, 3, 4} {1, 2, 3, 4} E(u)
Pr(s) 0.016 0.004 0.016 0.004 0.064 0.016 0.064 . . . 0.256 0.064 —
u1,s 0 10 0 0 7 10 10 . . . 7 17 9.4
u2,s 0 0 8 4 0 8 4 . . . 12 12 8.4

M(u) 0 0 0 0 0 8 4 . . . 7 12
PPPPPP6.448

8.4

Table 1: Utility profile and ex-ante and ex-post utility computation for a problem with 2 agents, 4 objects, probabilities p =
〈0.8, 0.5, 0.5, 0.2〉, weights w1 = 〈10, 2, 4, 7〉 and w2 = 〈3, 8, 4, 10〉, decision π = 〈{1, 4}, {2, 3}〉, M = min. Here,
pcu(π) = 6.448 and acu(π) = 8.4 (see Section 2.2).

that is, M = min – which is worthy of attention in this con-
text, as it represents exactly the expected utility of the poorest
agent.

Ex-ante collective utility Ex-ante collective utility is de-
fined by Equation (3) ; introducing some “expected weights”
w̃ij = pjwij , the expression can be simplified: ∀π ∈
D, acu(π) = Mi∈A ũi(π) where ũi(π) =

∑
j∈πi

w̃ij .
Thus, since the w̃ij coefficients can be computed in mere

linear-time, the problem of finding an ex-ante optimal alloca-
tion can be reduced to a classical risk-free resource allocation
problem with additive preferences, known as the Santa Claus
problem [1]. Since this problem has already been tackled in
litterature, we focus in the following on the ex-post optimiza-
tion problem.

Ex-post collective utility A basic algorithm for computing
the ex-post collective utility, directly applying formula (4),
requires the computation of the collective utility in each pos-
sible state (i.e each column in Table 1), that is, the enumera-
tion of an exponential number of values. Clearly, computing
the ex-post collective utility of a given decision is in #P, but
we do not know yet if it is complete for this class (even if we
strongly believe it).1

However, as soon as all the objects allocated to an agent
are in bad condition, the utility of this agent is zero, and
so is the collective utility, whatever states the remaining ob-
jects are in. Algorithm 1, which computes the ex-post col-
lective utility for a given decision, is based on this remark:
it quickly “eliminates” such states of nature, whose enumer-
ation is unnecessary. A function SORT is used in this algo-
rithm in the following manner: SORT(u, f) returns a vec-
tor u↑ which is a permutation of the values of u, such that
i < i′ ⇒ f(u↑i) ≤ f(u↑i′).

The optimization problem is tackled with both exact and
approximate algorithms.

The exact approach is based on a classic branch and bound
algorithm. Efficiency of such an algorithm highly depends on
its ability to quickly detect poor allocations in order to “cut”
significant parts of the search tree. A cut must be based on an
easy-to-compute function which maximizes the value to be
optimized.

Ex-post utility computation is time-consuming, and is
therefore not used as a cut strategy, but only to assess com-
plete allocations.

1Of course, computing an optimal allocation is even harder.

Algorithm 1: EXPOST function: ex-post collective utility
computation

Data: A complete allocation π
Result: Ex-post collective utility pcu(π)

π↑ ← SORT(〈π1, . . . , πn〉,X 7→ |X |) ;
return BRANCH(〈0, . . . , 0〉, 1, π↑, 1);

Function BRANCH(u, pr, 〈ρ1, . . . , ρn〉, i)
Data: A utility vector u, a number pr ∈ [0; 1], a vector

of shares ρ, an agent i
Result: Ex-post collective utility

if ρi = ∅ then
if i = n then

return min(u)× pr;
else

if ui = 0 then return 0;
return BRANCH(u, pr, ρ, i+ 1);

else
j ← arbitrary object in ρa;
ρ′ ← 〈. . . , ρi−1, ρi \ {j}, ρi+1, . . . 〉;
u′ ← 〈. . . , ui−1, ui + wij , ui+1, . . . 〉;
return BRANCH(u, pr · pj , ρ′, i) + BRANCH(u′,
pr · pj , ρ′, i);

Instead, we use inequality (5) and choose function acu as
upper bound ; acu represents the ex-ante utility of a virtual
decision which would allocate to all the agents the set of ob-
jects (denoted π0) that are not yet allocated by the current
decision π :

acu(π) = min
i∈A

(
∑
j∈πi

w̃ij +
∑
j∈π0

w̃ij)

Even though acu is clearly a rough upper bound, this value
remains fast to compute.

At this point, it seemed interesting to look for a intermedi-
ate function, which would be a better upper bound than acu
and faster to compute than pcu. The idea is to compute utility
in an ex-post manner for a subset Ω of objects, and in an ex-
ante manner for the other ones ; we introduce in this sense the
mixed utility, denoted mui,s for a given agent i and a given
state of nature s.

Algorithm 2: Stochastic greedy
Data: A risky fair division problem instance.
Result: A good allocation, according to ex-post

collective utility

Stock ← ∅ ;
π? = 〈π?1 , .., π?l 〉 ← 〈∅, . . . , ∅〉 ;
pcu? ← 0 ;
i← 0 ;
while given time has not elapsed do

π ← BUILDALLOCATION() ;
if acu(π) ≥ pcu? then

pcuapp ← EXPOSTA(π) ;
if pcuapp > minπ∈Stock(EXPOSTA(π)) then

STORE(π) ;

i← i+ 1 ;
if i = nbStorage× nbBeforeExactComputation
then

for π ∈ Stock do
pcu← EXPOST(π) ;
if pcu > pcu? then

π? ← π ;
pcu? ← pcu ;

Stock ← ∅ ;
i← 0 ;

return π? ;

Procedure BUILDALLOCATION()
u = 〈u1, .., un〉 ← 〈0, . . . , 0〉;
π = 〈π1, .., πn〉 ← 〈∅, . . . , ∅〉 ;
while ∃j ∈ π0 do

i̊← argmini∈A(alter(ui)) ;
j̊ ← argmaxj∈π0

(alter(ẘij));
π̊i ← π̊i ∪ j̊;
ůi ← ůi + ẘi̊j ;

return π ;

mui,s(π,Ω) =
∑

j∈Ω∩good(s)
j∈πi

wij +
∑
j /∈Ω
j∈πi

w̃ij

The mixed utility represents the utility of an agent which
considers that objects outside Ω are for sure in good condi-
tion and which assigns them weights w̃ij . The mixed collec-
tive utility is defined by Equation (6) as the ex-post collective
utility from individual mixed utilities.

mcu(π,Ω) =
∑
s∈S

Pr(s) ·min
i∈A

mui,s(π,Ω) (6)

Note that individual mixed utilities are independent from
the states of the objects outside Ω. The expected value
computation in Equation (6) can therefore boil down to the
formula (7), where for s s.t. good(s) ⊆ Ω, one denotes
Pr(s,Ω) =

∏
j∈good(s) pj

∏
j∈Ω\good(s) pj the probability

for objects in Ω to be in the state specified by s, whatever

states the other objects are in. The number of states of nature
to list is halved for each object outside Ω, which shows the
algorithmic point of mixed collective utility.

mcu(π,Ω) =
∑
s∈S

good(s)⊆Ω

Pr(s,Ω) ·min
i∈A

umi,s(π,Ω) (7)

We can prove that mixed collective utility lies between ex-
post and ex-ante collective utilities (proof omitted due to lack
of space).

Proposition 2 (Mixed collective utility) For all decision
π ∈ D and for all subset Ω ⊆ O, one has:

acu(π) ≥ mcu(π,Ω) ≥ pcu(π) (8)

Our branch and bound algorithm uses the upper bound
function acu to cut within the body of research: the function
mcu is used only when a complete allocation has been made,
to avoid unnecessary ex-post collective utility computations.

Dynamic heuristics are used as suggested by [2] : each ob-
ject will be firstly allocated to the poorest agent (i.e. the one
whose expected utility is currently the lower) ; when a new
object has to be allocated, the one preferred by the currently
poorest agent is chosen among those still left.

The approximate algorithm (Algorithm 2) is based upon
a greedy stochastic algorithm [3]. As soon as a complete
allocation has been built, an approximate ex-post collective
utility computation is made by EXPOSTA, in order to de-
cide if the allocation will be stored or not. The approxi-
mate computation is made using the mixed collective util-
ity or the Monte-Carlo method (the latter being based on
a sequence of random draws in the space of states of na-
ture). A fixed number nbStorage of promising allocations
is stored within the course of the algorithm ; if an alloca-
tion is better – as far as the approximate computation can
tell – than the worst currently stored, the function STORE
saves this new allocation (and the other one is deleted if
the storage capacity is reached). As soon as nbStorage ×
nbBeforeExactComputation allocations have been made,
an exact ex-post collective utility computation occurs for each
stored allocation, and only the best one is kept.

During the building of an allocation, we use randomly bi-
ased heuristics, introducing function alter : R → R, such
that ∀y ∈ R, alter(y) = y · (1 + φX), where φ is a positive
real parameter and X a standard normal random variable.

4 Results
Algorithms introduced in this article are implemented using
Java and run on random instances, where weightswao are uni-
formly drawn in {0, 1, .., 99}, and probabilities pj uniformly
in [0; 1].

Table 2 and Figure 1 show the results of the exact search
algorithm. Four configurations are tested: the algorithm is
firstly run with a cut based upon acu function only (case (a)),
then by using dynamic heuristics (case (b)), next by intro-
ducing Algorithm 1 for ex-post collective utility computation
(case (c)), and finally by adding mixed collective utility cuts
(case (d)). Figure 1 shows efficiency of configuration (d),

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 6 7 8 9 10 11

ex
-p

os
t c

om
pu

t.
tim

e
(%

 to
ta

l t
im

e)

objects

(b)

(a)

(c)

(d)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 7 7.5 8 8.5 9 9.5 10

ex
-p

os
t c

om
pu

t.
tim

e
(%

 to
ta

l t
im

e)

objects

(b)

(a)

(c)

(d)

Figure 1: Exact resolution. Duration of ex-post collective utility computations, as a percentage of total execution time, for 5
(left) and 7 (right) agents (mean over 100 instances)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8 9 10 11

(a
cu

*-
pc

u*
)/

ac
u*

objects

n = 2

n = 3

n = 4

n = 5
n = 6

n = 7

Figure 2: Timing effect influence. The ratio
(acu? − pcu?)/acu? varies with the number of objects,

for different numbers of agents..

 0.01

 0.1

 1

 10

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ex
-p

os
t u

til
ity

 c
om

pu
t.

nb

probability p_o

n=2, l=2

n=2, l=10

n=4, l=4

n=4, l=8

Figure 3: Probabilities influence. Number of totally
explored search tree branches, as a percentage of the

total number of branches (mean over 100 instances for
different numbers of agents and “equaly likely” objects)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120

pc
u(

t)
/p

cu
*

time(s)

N=5000

N=1000

N=200

(a) Monte-Carlo approximation, for different numbers of
draws.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120

pc
u(

t)
/p

cu
*

time(s)

|Omega| = 4

|Omega| = 8

(b) Mixed collective utility approximation, for different
sizes of the Ω set.

Figure 4: Approached resolution. Evolution of the best ex-post collective utility with time, for two approximation methods
(means over 100 instances involving 5 agents and 12 objects).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120

pc
u(

t)
/p

cu
*

time(s)

(5,30)

(5,12)

(30,5)

(30,2)

Figure 5: Approached resolution with Monte-Carlo method.
Ex-post collective utility evolution for different couples
(nbStorage, nbBeforeExactComputation) (means over
100 instances involving 5 agents and 12 objects)

in which use of mixed collective utility produces good cuts,
and therefore deeply reduces the number of ex-post collective
utility computations made during the algorithm.

n l (a) (b) (c) (d)
5 ≤ 9 100 100 100 100
5 10 49 52 89 100
5 11 1 1 10 52
5 ≥ 12 0 0 0 0
7 ≤ 8 100 100 100 100
7 9 27 47 100 100
7 10 0 1 19 32
7 ≥ 11 0 0 0 0

Table 2: Exact resolution. Number of instances solved in 30
seconds (over 100 random instances).

Figure 2 shows influence of the timing effect. Relative dif-
ference between ex-post and ex-ante collective utilities in-
creases when the number of agents increases or when the
number of objects decreases.

The algorithm efficiency highly depends on probabilities
p, which is clearly illustrated by Figure 3. Because of higher
proximity between ex-ante and ex-post collective utilities
when the probabilities pj are closer to 1, cutting strategies
are more efficient in this case.

Algorithm 2 is tested on 100 instances (n = 5, l = 12),
for a duration of 2 minutes2. Figure 4 illustrates the influence
of the approximation methods parameters ; Figure 5 shows
the importance of functionnal parameters: the best solution
quality significantly increases with the number of allocations
stored during the run.

5 Conclusion
In this article, we have introduced a simple model for re-
source allocation problems under risk. We have shown that,
under reasonable hypothesis, ex-ante collective utility opti-
mization could be reduced to risk-free optimization, but that

2Exact resolution of problems of this size takes 5 to 10 minutes.

ex-post optimization seemed to be far more complex. We
have proposed the mixed collective utility as groundwork for
the building of both an exact and an approximate algorithm.

Algorithms introduced in this article are a first attempt
at solving risky resource allocation problems and can most
probably be improved. Further work has to be made to
characterize the complexity of the ex-post-related problems.
Moreover, the ex-post egalitarian framework shows its limits
when l ≤ n due to the drawning effect induced by function
min. We plan next to extend the model, in order to work with
other collective utility aggregations such as the leximin order-
ing, consider preferential and/or probabilistic dependences
between objects, and to embrace a more general notion of
risk.

Acknowledgements We wish to thank Jérôme Lang and
Dı́dac Busquets for their numerous remarks during the gene-
sis of the present article. Authors would also like to thank the
anonymous reviewers for their comments and suggestions.

References
[1] N. Bansal and M. Sviridenko. The santa claus problem.

In Proceedings of the thirty-eighth annual ACM sym-
posium on Theory of computing, pages 31–40. ACM,
2006.

[2] S. Bouveret and M. Lemaı̂tre. Computing leximin-
optimal solutions in constraint networks. Artificial In-
telligence, 173(2):343–364, 2009.

[3] J. L. Bresina. Heuristic-Biased Stochastic Sampling. In
AAAI-96, pages 271–278, Portland, OR, 1996.

[4] Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang,
M. Lemaı̂tre, N. Maudet, J. Padget, S. Phelps, J. A.
Rodrı́guez-Aguilar, and P. Sousa. Issues in multiagent
resource allocation. Informatica, 30:3–31, 2006.

[5] T. Gajdos and J.-M. Tallon. Fairness under uncertainty.
Economics Bulletin, 4(18):1–7, 2002.

[6] J. C. Harsanyi. Cardinal welfare, individualistic ethics,
and interpersonal comparisons of utility. Journal of po-
litical economy, 63:309–321, 1955.

[7] A. Holland and B. O’Sullivan. Robust solutions for
combinatorial auctions. In Proc. of the 6th ACM Conf.
on Electronic Commerce, pages 183–192. ACM, 2005.

[8] M. Lemaı̂tre, G. Verfaillie, and N. Bataille. Exploiting a
common property resource under a fairness constraint:
a case study. In IJCAI-99, pages 206–211, Stockholm,
Sweden, July 1999.

[9] H. Moulin. Axioms of Cooperative Decision Making.
Cambridge University Press, 1988.

[10] R. B. Myerson. Utilitarianism, egalitarianism, and the
timing effect in social choice problems. Econometrica,
49(4):883–897, 1981.

