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Fair Allocation of Indivisible Goods

Sylvain Bouvereta and Yann Chevaleyreb and Nicolas Maudetcd

As introduced in Chapter 11 (Thomson, 2015), Fair Allocation (or Fair Division)
refers to the general problem of fairly dividing a common resource among agents
having different —and sometimes antagonistic— interests in the resource. But under
this general term one can actually gather a cluster of very different problems, all
calling for different solution concepts: after all, one can easily figure out that we
cannot allocate a set of objects like a bicycle, a car or a house like we allocate pieces
of land.

In this chapter, we will focus on fair division of indivisible goods. In other words,
the resource is here a set O = {o1, . . . , op} of objects (that may also be called goods
or items). Every object must be allocated as is, that is, an object loses its value
if it is broken or divided into pieces to be allocated to several individuals. This
assumption makes sense in a lot of real-world situations, where indivisible goods
can be for example physical objects such as houses or cars in divorce settlements, or
“virtual” objects like courses to allocate to students (Othman et al., 2010) or Earth
observation images (Lemâıtre et al., 1999). Moreover, we assume in this chapter
that the objects are non-shareable, which means that the same item cannot be
allocated to more than one agent. This assumption seems to be questionable when
the objects at stake are rather non-rival, that is, when the consumption of one
unit by an agent will not prevent another one from having another unit (what we
referred to as “virtual” objects). In most applications, such non-rival objects are
available in limited quantity though (e.g. number of attendants in a course). This
kind of problems can always be modeled with non-shareable goods by introducing
several units of the same good.

What mainly makes fair division of indivisible goods specific, if not more difficult,
is that classical fairness concepts like envy-freeness or proportionality are sometimes
unreachable, unlike in the divisible (a.k.a. cake-cutting) case. As an illustration of
this difference, consider a (infinitely divisible) piece of land which has to be split
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among two individuals, Alice and Bob. One classical way to proceed (see Chapter 13,
Procaccia, 2015) is to let Alice propose a cut, and then let Bob take the share he
prefers. If Alice acts rationally, she will cut the land into two pieces of the same
value to her (if she acts differently she may end up with a worse piece), and hence
will not envy Bob’s piece. Such an envy-free allocation is always reachable with a
divisible resource, but computing this allocation may require an unbounded number
of cuts, as we will see in Chapter 13, Section 13.4 (Procaccia, 2015). Even in the
presence of indivisible items, the use of a special divisible resource (money) allows
to “transfer utility” and suffices to guarantee this existence (Beviá, 1998). This is
not the case when only indivisible goods are available: if, in the extreme case, there
is a single good and two agents, one of the two will obviously be despoiled. Worse,
in the general case, figuring out for a given instance whether such a fair solution
even exists can be very complex (see Section 12.3).

To circumvent this issue, some authors reintroduce some divisibility in the pro-
cess, either by relaxing the integrity of some goods and allocating fractions of these
goods, as in the Adjusted Winner procedure proposed by Brams and Taylor (2000)
and explained in Section 12.4, or by using money as an ex-post compensation for
despoiled agents. When these kinds of solutions are not available, some authors
(among which Brams et al., 2014) propose to relax the assumption that all the ob-
jects should be allocated. Another option is to relax our fairness requirement and
focus on weaker solution concepts. These two last options correspond to the two
possible solutions to the classical fairness versus efficiency trade-off (Section 12.2).

We cannot conclude this overview of distinctive features of indivisible goods with-
out mentioning preferences. Preferences are at the heart of fair division, because
fairness is often related to what the agents prefer to get from the allocation, may
it be what they need, or what they just would like to have. To be able to compare
two different allocations, we should first be able to figure out how the agents at
stake evaluate their shares. This may come down to answering questions like: “does
Alice prefer the bike and the boat together or the car alone?”. While the number
of shares to compare is finite, this number is huge, and makes the explicit repre-
sentation of agents’ preferences unrealistic. Concise preference representation is yet
not out of reach, and can be achieved at the price of restricting assumptions —like
additivity— or increased complexity (see Section 12.1). However, as can be seen
in Chapter 13 (Procaccia, 2015), such preference representation languages do not
really transpose to the divisible case, which makes the design of centralized one-
shot procedures less relevant to this case. This may explain why many works in fair
division of indivisible goods focus on complexity and algorithmic issues of central-
ized allocation procedures (see Section 12.3), while the literature in cake-cutting is
more concerned with the design of interactive protocols for fair division. There are
nevertheless prominent protocols for the allocation of indivisible items, we review
some of them in Section 12.4.
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Preliminary definitions. We will now introduce a few formal definitions which will
be used all along the chapter. In this chapter, N = {1, . . . , n} will be a set of n
agents, and O = {o1, . . . , op} a set of p (indivisible, non-shareable) objects. Each
subset S of O is called a bundle. In the following, we will sometimes write o1o2o3 as
a shortcut for bundle {o1, o2, o3}. An allocation is a function π : N → 2O mapping
each agent to the bundle she receives, such that π(i)∩π(j) = ∅ when i 6= j since the
items cannot be shared. The subset of objects π(i) will be called agent i’s bundle
(or share). When

⋃
i∈N π(i) = O, the allocation is said to be complete. Otherwise,

it is partial. The set of all allocations is denoted Π.
Following Chevaleyre et al. (2006), a MultiAgent Resource Allocation setting

(MARA setting for short) denotes a triple (N,O, R), where N is a finite set of
agents, O is a finite set of indivisible and non-shareable objects, and R is a se-
quence of n preference relations on the bundles of O. The notion of “preference
relation” has to be properly defined, which is not straightforward, and is the topic
of the entire next section.

12.1 Preferences for Resource Allocation Problems

In order to allocate the indivisible goods properly to the agents, the community
(or the benevolent arbitrator acting on behalf of it) needs to take into account the
agents’ wishes about the goods they want to receive. In other words, one has to be
able to compare the different allocations based on the preferences the agents have on
what they receive.1 As we have seen in the introduction, the particular structure
of the set of allocations is the main distinctive feature of resource allocation of
indivisible goods, that makes the expression of preferences and the resolution of
this kind of problems particularly difficult from a computational point of view.

12.1.1 Individual preferences: from objects to bundles

The minimal and most natural assumption we can reasonably make on the agents is
that they are at least able to compare each pair of individual items, just like voters
are able to compare each pair of candidates in an election setting (see Chapter 2,
Zwicker, 2015). In other words, we can minimally assume that each agent i is
equipped with a preorder Di on O. Two further assumptions that are commonly
made are that this relation is:

• either a linear order Bi, which basically means that each agent is able to rank
each item from the best to the worst, with no ties allowed (this is the classical
preference model in voting theory);

1 We assume that the agents only care about what they receive, and not what the others receive. This
assumption of non-exogenous preferences is commonly made in the context of fair division.
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• or represented by a utility function wi : O → F, mapping each object to a score
taken from a numerical set (that we will assume to be N, Q or R for the sake of
simplicity).

Unlike in voting theory, ranking items is generally not enough to provide valuable
information about the agents’ preferences concerning different allocations. Consider
for example a setting where four objects {o1, o2, o3, o4} have to be allocated to two
different agents. Suppose that agent 1 ranks the objects as follows: o1Bo2Bo3Bo4.
Does it mean that she would prefer an allocation that would give her o1 and o4 to
an allocation that would give her o2 and o3? Or an allocation that would give her
o1 to an allocation that would give her o2 and o4?

The technical problem that lies behind this kind of questions is the problem of
lifting the preference relation D (or the utility function w) on individual objects to
a preference relation % (or a utility function u) on bundles of objects.2 There are
two possible ways of doing it:

1. either by automatically lifting preferences to bundles of objects using some nat-
ural assumptions;

2. or by asking the agents to rank not only the individual objects but also the
bundles of objects.

12.1.2 Additive preferences

The first approach has been considered by several authors, either in economics
(Brams and King, 2005; Herreiner and Puppe, 2009) or in computer science (Lipton
et al., 2004; Bansal and Sviridenko, 2006; Bouveret et al., 2010). These works are
usually based on a cardinal property and its ordinal counterpart, which can be
reasonably assumed in many resource allocation contexts:

Definition 12.1 (Modularity) A utility function u : 2O → F is modular if and
only if for each pair of bundles (S,S ′), we have u(S∪S ′) = u(S)+u(S ′)−u(S∩S ′).

An equivalent definition is that for each bundle S, u(S) = u(∅) +
∑
o∈S u({o}).

If we further assume that the utility of an agent for the empty set (u(∅)) is 0,
then we can compute the utility of an agent for each bundle of objects S by just
summing the scores given by this agent to each individual object in S. In this case,
the utility function is said to be additive. This is one of the most classical settings
in fair division of indivisible goods.

Additivity is a very strong property that forbids any kind of synergy between
objects. Going back to our previous example with four objects, additivity implies
that since agent 1 prefers o1 to o2, she will also prefer {o1, o3} to {o2, o3}. This makes
sense if o3 is rather uncorrelated to o1 and o2: for example, if o1 is a voucher for a
2 The problem of lifting preferences over items to preferences over bundles has actually been studied

in depth in social choice theory (Barberà et al., 2004).
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train ticket in France, o2 is a voucher for a night in Paris, and o3 is a camera, it seems
reasonable to assume that my preference on taking the train rather than spending
a night in Paris will hold, no matter whether a camera is delivered with the voucher
or not. Another way to state it is to say that if in bundle {o2, o3} o2 is replaced by
a better object (e.g. o1), then it makes a better bundle. This feature corresponds
to a notion called pairwise-dominance, or responsiveness (Barberà et al., 2004),
which can be stated formally in a purely ordinal context: ∀S ⊂ O and all o ∈ S and
o′ ∈ O\S, (S � S\{o}∪{o′} ⇔ {o} � {o′}) and (S\{o}∪{o′} � S ⇔ {o′} � {o}).3

Responsiveness is used among others by Brams et al. (2004); Brams and King
(2005) to lift preferences defined as a linear order B over single objects to a prefer-
ence relation over bundles of objects of the same cardinality.4 To be able to compare
bundles of different cardinalities, some authors (Bouveret et al., 2010; Brams et al.,
2012) add a monotonicity assumption stating that if S ⊃ S ′, S � S ′.5 Responsive-
ness (in its strict form, or with possible indifferences) plays an important role in
fair division under ordinal preferences, because it has an interesting implication. An
agent with responsive preferences will always be able to pick unambiguously the ob-
ject that she prefers among a set, this choice being independent from what she has
already received, and what she will receive later on. This property guarantees that
some protocols for fair division such as the undercut procedure (see Section 12.4.1)
or picking sequences (see Section 12.4.2) work properly. As mentioned above, this
property, in its strict form, is also at the basis of a few works (Brams et al., 2004;
Brams and King, 2005; Bouveret et al., 2010), the latter having been extended by
Aziz et al. (2014) to deal with (responsive) preferences with indifferences.

Note that, interestingly, it can be easily shown that any preference relation �
obtained by lifting a linear order B over single objects using pairwise dominance
and monotonicity can be represented by any additive utility function u (i.e. u(S) >
u(S ′) ⇔ S � S ′), as soon as u is compatible with the linear order (i.e. u(o) >
u(o′)⇔ SBS ′). However, things are not so simple as soon as indifferences between
bundles are allowed: as mentioned by Barberà et al. (2004), additive representability
only entails responsiveness, but is not equivalent.6

12.1.3 Beyond additivity

Going back to the previous example, additivity makes sense when the objects at
stake are rather unconnected (a train ticket and a camera in the example). However,
things are different if the objects are of similar nature or are closely coupled. For

3 To be precise, in the original definition by Barberà et al. (2004) the comparisons are not strict, but
some authors like e.g. Brams et al. (2012) use this strict version of responsiveness.

4 Such a lifting is called the responsive set extension.
5 Monotonicity will be formally introduced on page 12.
6 Another important property is extended independence, which states that for every pair of bundles

(S,S′), and every bundle S′′ such that (S ∪ S′) ∩ S′′ = ∅, we have: S � S′ ⇒ S ∪ S′′ % S′ ∪ S′′.
Additive representability entails extended independence which in turn entails responsiveness.
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example, if o3 is now a plane ticket for the same day as the train ticket, we can
reasonably assume that my preferences will be reversed, since now only the night
in Paris is compatible with the plane ticket (so by getting the night and the plane
ticket I can enjoy both, whereas by getting the train and plane tickets I will have
to drop one of the two). This is a case where additive preferences fail to represent
what the agents really have in mind, because there are some dependencies between
objects. These dependencies (or synergies) can be of two kinds: complementarity or
substitutability. Complementarity occurs when having a group of objects is worth
more than the “sum” of their individual values: the agent benefits from using them
jointly. Going back to our previous example, the plane ticket and the night in Paris
can be considered as complementary (if I am not living in Paris): I can use the
plane ticket to fly to Paris, and then spend the night there. Substitutability occurs
when objects are of very similar nature and when their use is mutually exclusive.
In our example, the plane and the train tickets are exclusive, and thus their joint
value is not more than the value of one of the two.

A way to circumvent this problem is to allocate the items by pre-made bundles
instead of proposing them individually (just like most shoe retailers sell shoes by
pairs, not individually). However, in most cases the preferential dependencies are of
subjective nature, and complementary and substitutable items are simply not the
same for everyone. 7 In that case, we just cannot do anything else than asking the
agents to rank all the possible bundles of objects. As the reader might guess however,
the number of possible bundles obviously grows exponentially with the number of
objects, which renders the explicit ranking of all bundles simply impossible as soon
as the number of objects exceeds 4 or 5. To illustrate this combinatorial blow-up,
consider a resource allocation problem with just 16 objects, which seems to be a
setting of very reasonable (if not small) size. In such a problem, each agent will
have to compare 216 = 65536 bundles, which comes down to a tremendous (and
unrealistic) amount of work for the agents.

As we can see, the community of agents or the benevolent arbitrator acting on
behalf of it faces a dilemma: either restricting the set of expressible preferences to
additive ones and hence ruling out the expression any kind of preferential depen-
dencies, or letting the agents compare all pairs of possible bundles and falling in
the combinatorial blow-up trap.

12.1.4 Compact preference representation

Compact preference representation languages can be seen as a compromise, often
made at the price of increased computational complexity. The idea here is to use
an intermediate language which can represent the agents’ preferences as closely
7 For example, a laptop computer and a tablet-PC might be complementary for individuals doing a

lot of writing at home (they would need a good keyboard) and a lot of reading while traveling (they
would require a lightweight device). For others, these devices might be substitutable.
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as possible, while formulas in that language remain as compact as possible. One
formula in this language simply represents one preference relation on the bundles
of objects. More formally:

Definition 12.2 (Preference representation language) An ordinal (resp. a cardi-
nal) preference representation language is a pair 〈L, I(L)〉 that associates to each
set of objects:8

• a language L(O) (i.e. a vocabulary and a set of well-formed formulas) —the
syntactical part of the language;

• an interpretation I(L)(O) that maps any well-formed formula ϕ of L(O) to a
preorder %ϕ of 2O (resp. a utility function uϕ : 2O → F) —the semantical part
of the language.

A trivial example of preference representation language is the bundle form, which
can be seen as a form of explicit representation. A formula in this language is just
made of a set of pairs 〈S, uS〉, where S is a bundle of objects, and u is a non-zero
numerical weight. The utility of a given bundle S is just uS if 〈S, uS〉 belongs to
the set, and 0 otherwise.

One might wonder what in the use of an intermediate language for represent-
ing ordinal or numerical preferences makes the representation “compact”. Actually,
reconciling (full) expressivity and succinctness is an unsolvable equation for the
following reason. If for the sake of example we consider numerical preferences, the
number of utility functions from 2O → {0, . . . ,K − 1} is K2p (with p = |O|).
Following an information-theoretic argument recalled by Cramton et al. (2006), it
means that if our language is fully expressive, some utility functions will need at
least 2p lnK

ln 2 bits to be encoded as a formula, since no encoding of t bits is able to
discriminate more than 2t words. Hence, compact preference representation is not
a matter of representing all preference relations in reasonable (polynomial) size,
but just the interesting ones, that is the ones that are more likely to correspond
to what the agents will naturally express. For example, the bundle form language
described above can be considered compact only if it is reasonable to assume that
the agents will value positively only a small number of bundles.

Additivity generalized. Let us take another example of what we mean by “interesting
preference relations”. Consider additive utility functions introduced earlier. Their
main advantages are their conciseness (each agent just needs to provide one weight
for each object) and their simplicity. However, their annoying drawback is that
they are unable to encode even the slightest complementarity or substitutability
between objects. On the other hand, allowing any kind of synergy exposes us to the
computational blow-up, whereas it is very likely that an agent would be willing to
8 Preference representation languages can be used more generally to represent a preference relation

on any combinatorial set of alternatives. For the sake of simplicity, we choose to restrict the
definition here to sets of objects.
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express only synergies concerning a limited number of objects (do we really need to
give the agents the opportunity of expressing the added value of owning a bundle
of 42 objects compared to the values of its proper subsets?). This is the idea behind
k-additive numerical preferences:

Definition 12.3 (k-additive preference representation language) A formula in
the k-additive representation language is a set B of pairs 〈S, wS〉, where S ⊆ O is
a bundle of size at most k, and wS is a non-zero numerical weight. Given a formula
B in this language, the utility of each bundle S is defined as:

u(S) =
∑

〈S ′, wS′〉 ∈ B
S ′ ⊆ S, |S ′| ≤ k

wS′ (12.1)

The weight wS represents the added value of S, beyond the value of its proper
subsets, or in other words, the synergistic potential of S.9 If this number is positive,
it means that the objects in S work in complementarity, if it is negative, these
objects are probably substitutable. A utility function u whose weights of size 2 or
more are positive (resp. negative) has the supermodularity (resp. submodularity)
property. In other words, it holds that that u(S ∪ S ′) ≥ u(S) + u(S ′) − u(S ∩ S ′)
(resp. u(S ∪ S ′) ≤ u(S) + u(S ′)− u(S ∩ S ′)).

Example 12.4 Let O = {o1, o2, o3, o4} be a set of objects, and let u be the k-
additive utility function defined from the following set of weights: 〈o1, 2〉, 〈o2, 2〉,
〈o1o2,−2〉, 〈o3o4, 10〉. All other bundles have weight zero. We have for example
u(o1) = u(o2) = 2, and u(o1o2) = 2+2−2, which is 2 as well. This probably means
that objects o1 and o2 are substitutes (having both does not give more utility than
having just one). On the contrary, o3 and o4 alone are useless (u(o4) = u(o3) = 0),
but having them together is interesting (u(o3o4) = 10), which means that they act
as complementary objects. We can also notice that u is neither modular, nor sub-
or supermodular.

The succinctness of the language is ensured by the parameter k, that bounds the
size of formulas representing our utility functions to

∑k
i=0
(
p
i

)
= O(pk) This param-

eter k can be seen as a value that represents the trade-off between full expressivity
(and formulas of potentially exponential size) if k = p and limited expressivity (and
formulas of linear size), i.e. additive functions, if k = 1.

Graphical models. Interestingly, the k-additive preference representation coincides,
for the special case of bundle combinatorial spaces we have to deal with in re-
source allocation problems, with a more general preference representation language:
GAI-nets (Bacchus and Grove, 1995; Gonzales and Perny, 2004). The language
9 These weights are also called Möbius masses in the context of fuzzy measures, where this kind of

representation is extensively used (see e.g. Grabisch, 1997).
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of GAI-nets is a graphical model for preference representation. Graphical models
are a family of knowledge representation languages, which have been introduced
decades ago in the context of uncertainty (e.g influence diagrams, see Howard and
Matheson, 1984) probabilistic modeling (e.g. Bayesian networks, see Pearl, 1988),
constraint satisfaction (Montanari, 1974) or valued constraint optimization (Schiex
et al., 1995). In all these contexts, graphical models are based upon the same com-
ponents: (i) a graphical component describing directed or undirected dependencies
between variables; (ii) a collection of local statements on single variables or small
subsets of variables, compatible with the dependence structure. In the particular
case of GAI-nets, the preferential (in)dependence notion upon which this language
is built is generalized additive independence (GAI), introduced by Fishburn (1970),
further developed by Keeney and Raiffa (1976) in the context of multiattribute deci-
sion making. The k-additive representation introduced earlier can be seen as a GAI
representation on a bundle space, where the size of the local relations (synergies)
is explicitly bounded by k, and with no associated graphical representation.

GAI-nets are not the only graphical model for compact preference representation.
Boutilier et al. (1999, 2004) have developed a very powerful and popular preference
representation language: CP-nets. Unlike GAI-nets, CP-nets are dedicated to the
representation of ordinal preferences. Here, the graphical structure describes the
(directed) preferential dependencies between variables. The local statements, for
each variable, describe the agents’ ordinal preferences on the values of the variable’s
domain, given all the possible combinations of values of its parents (hence “CP”
standing for “Conditional Preferences”), and all other things being equal (ceteris
paribus).

CP-nets have been extended to a family of preference representation languages
with different features (see e.g. Brafman et al., 2006, for TCP-nets, Boutilier et al.,
2001, for UCP-nets and Wilson, 2004, for CP-theories). One of these languages, CI-
nets (Bouveret et al., 2009) is especially dedicated to the representation of ordinal
preferences on sets of objects, hence well-suited to fair division problems. Formally,
a CI-net N is a set of CI statements (where CI stands for Conditional Importance)
of the form S+,S− : S1 .S2 (where S+, S−, S1 and S2 are pairwise-disjoint subsets
of O). The informal reading of such a statement is: “if I have all the items in S+ and
none of those in S−, I prefer obtaining all items in S1 to obtaining all those in S2, all
other things being equal (ceteris paribus).” Formally, the interpretation of a CI-net
N is the smallest monotonic strict partial order� that satisfies each CI-statement in
N , that is, for each CI-statement S+,S− : S1.S2, we have S ′∪S+∪S1 � S ′∪S+∪S2
as soon as S ′ ⊆ O \ (S+ ∪ S− ∪ S1 ∪ S2).

Example 12.5 Let O = {o1, o2, o3, o4} be a set of objects, and let N be the
CI-net defined by the two following CI-statements: S1 = (o1, ∅ : o4 . o2o3); S2 =
(∅, o1, : o2o3 . o4).

From N , we can deduce for example that o1o4 � o1o2o3 (S1) and o2o3 � o4 (S2).
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We can notice that obviously � is not responsive, as having o1 or not in the bundle
reverses the preference between o2o3 and o4.

CI-nets are a quite natural way of expressing preferences on subsets of objects.
However, as we shall see later on, computational complexity is the price to pay for
this cognitive relevance. A strict subset of this language, SCI-nets, that coincides
with responsive monotonic preferences, have been further investigated from the
point of view of fair resource allocation (Bouveret et al., 2010).

Logic-based languages. Another family of compact representation languages, which,
unlike k-additive representation or graphical models, is not based on limited syner-
gies, is the family logical languages. As we will see, propositional logic is well-suited
to represent preferences on subsets of objects, because any set of subsets of objects
can be represented (often compactly) by a propositional formula.

In the following, given a set of objects O, we will denote by LO the proposi-
tional language built upon the usual propositional operators ∧, ∨ and ¬, and one
propositional variable for each object in O (for the sake of simplicity we use the
same symbol for denoting the object and its associated propositional variable). Each
formula ϕ of LO represents a goal that an agent is willing to achieve. From any
bundle S we can build a logical interpretation I(S) by setting all the propositional
variables corresponding to an object in S to > and the other to ⊥. A bundle S
satisfies a goal ϕ (written S � ϕ) if and only if I(S) � ϕ. A goal ϕ thus stands for
a compact representation of the set of all bundles that satisfy ϕ.

Example 12.6 Let O = {o1, o2, o3} be a set of objects. The goal ϕ = o1∨(o2∧o3)
is a compact representation of the set of bundles {o1, o1o2, o1o3, o2o3, o1o2o3}.

The most obvious way of interpreting a goal as a preference relation is to consider
that the agent is only happy if the goal is satisfied, and unhappy otherwise. This
leads to a dichotomous preference relation %ϕ that is defined as follows: for each
pair of bundles 〈S,S ′〉, we have S �ϕ S ′ if and only if S � ϕ or S ′ 6� ϕ.

This approach is not very subtle: the agent is not even able to express the tiniest
preference between two different objects she both desires. We can do better:

• The first idea is to allow an agent to express several goals (a goal base) at the
same time. Counting the number of goals satisfied by a given bundle for example
gives a good idea of how interesting the bundle is for an agent.
• The second idea is to further allow an agent to prioritize the goals of her goal

base (bundles are then evaluated in terms of the higher priority goal they satisfy).
• A third idea is that, beyond prioritizing her goal, an agent gives a weight (or

a score) to each of them. This idea leads to the weighted logic-based preference
representation language that is described below.

Definition 12.7 (Weighted logic-based preference representation language) A
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formula in the weighted logic-based representation language is a set ∆ of pairs
〈ϕ,wϕ〉, where ϕ is a well-formed formula of the propositional language LO, and
wϕ is a non-zero numerical weight.

Given a formula ∆ in this language, the utility of each bundle S is defined as:

u(S) =
∑

(ϕ,wϕ)∈∆ | S�ϕ

wϕ (12.2)

Note that in Equation (12.2) any other aggregation operator can be used, such as
for example the maximum that selects only the highest weight among the satisfied
goals (Bouveret et al., 2005).

Example 12.8 Let O = {o1, o2, o3} be a set of objects. The goal ∆ = {〈o1 ∨
o2, 1〉, 〈o2 ∧ o3, 2〉} is a compact representation of the utility function:

S ∅ o1 o2 o3 o1o2 o1o3 o2o3 o1o2o3

u(S) 0 1 1 0 1 1 3 3

The interested reader can refer to Lang (2004) for an extensive survey on logic-
based preference representation languages. Coste-Marquis et al. (2004) and Uckel-
man (2009) provide some detailed results about the expressivity, succintness and
computational complexity of these languages.

Bidding languages. We conclude this introduction about compact preference rep-
resentation for resource allocation by discussing a domain closely related to ours:
auctions. Auctions are only distinguished from a general resource allocation prob-
lem with indivisible goods by the fact that money is at the heart of the evaluation
scale (utility here actually represents the amount an agent is ready to pay to ob-
tain some object), and that auctioneers do not care about end-state fairness issues
in general. Beyond these “ethical” differences, nothing formally distinguishes an
auction setting from a general resource allocation problem.

In the classical auction setting, buyers (or sellers if we deal with reverse auctions)
can only bid on individual objects. As a result, the same expressivity problem as
the one aforementioned for additive preferences occurs: a bidder is simply unable to
express her preference in a proper way if she has preferential dependencies between
the objects to be sold. This issue has led Rassenti et al. (1982) to define a new
auction setting, where bidders can actually bid on bundles of items, instead of
just individual items: combinatorial auctions (Cramton et al., 2006). To overcome
the combinatorial blow-up caused by the explicit representation of set functions,
this community has developed its own stream of compact preference representation
languages: bidding languages. We will not describe these languages here, but the
interested reader can refer to the book by Cramton et al. (2006) and especially its
chapter about bidding languages (Nisan, 2006) for more information.
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About monotonicity. Beyond all these preference representation approaches, a prop-
erty that is often taken for granted in most fair division contexts is monotonicity:

Definition 12.9 (Monotonicity) A preference relation % on 2O is monotonic
(resp. strictly monotonic) if and only if S ( S ′ ⇒ S - S ′ (resp. S ≺ S ′).

Monotonicity formalizes the fact that all the objects have a positive value for
each agent, and that the “more” objects an agent receives, the “happier” she will
be. Going back to our previous example with four objects, monotonicity implies here
that our agent prefers for example o1 and o2 together to o1 alone. This assumption
is very natural as long as we are dealing with “positive” objects or “negative” ones,
such as tasks or chores (reversing the inequality in this case), but not mixing the two.
For most typical compact preference representation languages, the monotonicity
assumption has a very natural translation into a simple property on the formulas.
For example, for numerical modular preferences, monotonicity is equivalent to the
positivity of w(oi) for every object oi. For weighted logic-based formulas, a sufficient
condition for monotonicity is to require that the weight of every formula is positive,
together with forbidding the negation symbol ¬.

Unless explicitly stated, we will consider in this chapter that all the preference
relations we are dealing with are monotonic.

12.1.5 Multiagent Resource Allocation Settings

After this discussion about preferences, we can update the definition of MARA
setting proposed at the end of the introduction and make it more precise. In the
following, an ordinal MultiAgent Resource Allocation setting (ordinal-MARA set-
ting for short) will be defined as a triple 〈N,O, R〉, where N is a finite set of
agents, O is a finite set of indivisible and non-shareable objects, and R is a set
{%1, . . . ,%n} of preorders on 2O, defined as well-formed formulas in a (compact)
ordinal representation language.

A cardinal-MARA setting will be defined accordingly by replacing the set R of
preorders by a set U = {u1, . . . , un} of utility functions on 2O, defined as well-
formed formulas in a (compact) numerical representation language.

12.2 The Fairness vs. Efficiency Trade-off

Now that the setting is properly defined, we will deal with the definition of fair
allocations. In what follows we will mainly focus on two notions of fairness (see
Chapter 11, Thomson, 2015): maxmin allocations and envy-free allocations. Note
that the former is only defined in the cardinal-MARA setting, because it requires
the ability to compare the well-being of different agents, whereas the latter is well
defined in both MARA settings.
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In cardinal-MARA settings, maxmin allocations optimize the so-called egalitarian
social welfare:

Definition 12.10 (Maxmin) An allocation is maxmin when the utility of the
poorest agent is as high as posible, i.e.

max
π∈Π

{
min
i∈N

ui(π(i))
}

Note that it is still possible to conceive ordinal versions of this notion: for instance
we may wish to maximize the worst “rank” of a bundle in the preference orderings
of agents (rank-maxmin).

Envy-freeness only requires an ordinal-MARA setting to operate:

Definition 12.11 (Envy-freeness) An allocation is envy-free when π(i) %i π(j)
for all agents i, j ∈ N .

Unfortunately, these fairness objectives may not be compatible with the objec-
tive of efficiency. Informally, efficiency can be seen as the fact that resources shall
not be “under-exploited”. At the weakest sense, it means that we should only con-
sider complete allocations (objects should not be thrown away). However, usually,
efficiency corresponds to the stronger notion of Pareto-efficiency or to the even
stronger notion of utilitarian optimality (for cardinal-MARA settings). This latter
notion of efficiency provides a convenient way to quantify the loss of efficiency due
to the requirement to meet a fairness criterion: this is the idea of the price of fair-
ness, which will also be discussed in Chapter 13 (Procaccia, 2015) in the context of
divisible goods.

12.2.1 Maxmin allocations

As a warm-up, let us start with maxmin allocations and Pareto-efficiency. Observe
that a maxmin allocation is not necessarily Pareto-optimal. This is so because this
notion only focuses on the well-being of the agent who is worst-off, and overlooks
the rest of the society. But it may well be the case that for the same utility enjoyed
by the “poorest” agent, a better allocation of resources exists for the rest.10 On the
other hand, among the set of maxmin optimal allocations, one can easily see that
at least one of them must be Pareto-optimal (many of them can be). Assume for
contradiction that it is not the case. Then for each maxmin allocation π there is
another allocation π′ Pareto-dominating π and not in the set of maxmin allocations.
Since π′ Pareto-dominates π we have ui(π′(i)) ≥ ui(π(i)) ≥ mink∈N (π(k)) for all
i ∈ N . Hence either mink∈N (π′(k)) = mink∈N (π(k)), in which case π′ is maxmin
10 A way to overcome this problem and reconcile maxmin allocations with Pareto-optimality is to use

the leximin preorder (Sen, 1970) which can be seen as a refinement of the maxmin fairness criterion:
if two allocations yield the same maxmin value, then the leximin criterion will discriminate them
based on the second poorest agent if possible, otherwise on the third poorest, and so on.
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optimal, or mink∈N (π′(k)) > mink∈N (π(k)), in which case π is not maxmin optimal.
In both case, this is a contradiction.

If we now consider the utilitarian notion of efficiency, then no guarantee can
be given on the loss of efficiency induced by the requirement to have a maxmin
allocation. Let us make this statement more formal using the notion of price of
fairness. The price of fairness is usually defined as the ratio between the total
utility of the optimal utilitarian allocation over the total utility of the best maxmin
optimal allocation. The following holds:

Theorem 12.12 (Caragiannis et al., 2012) The price of fairness for maxmin
allocations is unbounded.

Proof Suppose the preferences of n agents regarding n objects are normalized so
that they sum up to 1, and are set as follows: each agent i (from 1 to n − 1) has
utility ε for object oi, 1− ε for object oi+1, and 0 for the other objects, while agent
n has only utility 1 for object on. The maxmin allocation assigns object oi to each
agent i, and thus yields 1 + (n− 1) · ε overall when we sum utilities. But giving to
each agent i ∈ 1, . . . , n − 1 object oi+1 (and object 1 to anyone) yields an overall
(n− 1) · (1− ε). Hence, the ratio is unbounded as n grows.

12.2.2 Envy-freeness

As an obvious first remark, note that a partial allocation where each good is thrown
away is obviously envy-free: all agents own the same empty bundle, so they can-
not envy each other. Thus, in this section we will focus on the non-trivial case of
complete allocations.

First, as with the maxmin criterion, an envy-free allocation is not necessarily
Pareto-efficient, as shown in the following example:

Example 12.13 Let O = {o1, o2, o3, o4} be a set of objects shared by two agents.
Assume u1 (S) = 1{{o1,o2}}(S) and u2 (S) = 1{{o3,o4}}(S), where 1. is the indicator
function. Then, the allocation where agent 1 owns {o1, o3} and agent 2 owns {o2, o4}
is complete and envy-free, but not Pareto efficient: giving {o1, o2} and {o3, o4}
respectively to agents 1 and 2 will strictly increase their utility function.

Next, it is easy to show that there does not always exist an envy-free complete
allocation. Consider the case where two agents share a single good, and suppose
this good is preferred by both agents to the empty bundle. Then, the agent owning
the good will be envied by the other agent. More generally, the probability of ex-
istence of complete and envy-free allocation has actually been further investigated
in a recent work by Dickerson et al. (2014). In particular, this work shows analyti-
cally that under several assumptions on the probability distribution of the agents’
(additive) preferences, an envy-free allocation is unlikely to exist up to a given
threshold on the ratio between the number of goods and the number of agents, and
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very likely to exist beyond. Experimental results show an interesting phenomenon
of phase-transition.

Finally, consider the utilitarian notion of efficiency. Similarly to the price of fair-
ness, the price of envy-freeness has been defined by Caragiannis et al. (2012) as the
ratio between the total utility of the optimal utilitarian allocation over the total
utility of the best envy-free allocation. Caragiannis et al. (2012) show that the price
of envy-freeness is Θ (n). So as more and more agents appear in the system, the gap
between envy-free allocations and optimal allocations will grow at a linear rate.

12.2.3 Other fairness criteria

Beyond maxmin fairness and envy-freeness, proportionality is another prominent
fairness criterion. This property, coined by Steinhaus (1948) in the context of con-
tinuous fair division (cake-cutting) problems, states that each agent should get from
the allocation at least the nth of the total utility she would have received if she were
alone. Obviously, this criterion is related to maxmin fairness when utility are nor-
malized (each agent gives the same value to the entire set of objects): if there exists
an allocation that satisfies proportionality, then any maxmin-optimal allocation
satisfies it. As we will see in Chapter 13 (Procaccia, 2015), it is always possible to
find an allocation that satisfies proportionality. In the case of two agents, the ex-
ample procedure given in the introduction of the chapter (Alice cuts, Bob chooses)
obviously guarantees a proportional share to both agents. Once again, things turn
bad when we switch to indivisible objects (just consider again one object and two
agents, no allocation can give her fair share to each agent).

Even if it is not possible to guarantee the nth of the resource to each agent,
Demko and Hill (1988) have shown that under additive numerical preferences it is
always possible to find an allocation guaranteeing a given amount of utility (only
depending on the maximum weight α given by the agents to the objects) to each
agent. Markakis and Psomas (2011) have significantly extended this result, first by
showing that it is actually possible to guarantee that the minimal amount of utility
received by each agent i depends on the maximum weight αi given by this agent to
the objects, and secondly by exhibiting a deterministic polynomial-time algorithm
to compute it. The same idea has been used by Gourvès et al. (2013), who further
refine these results by constructively exhibiting a stronger lower bound, that also
works for fair division problems with a particular kind of admissibility constraints
represented as a matroid.

Another approach has been proposed by Budish (2011). Instead on focusing on
the maximal fraction of absolute utility it is possible to guarantee to each agent,
Budish (2011) proposes to start from the “I cut you choose” protocol described
earlier in the divisible case, and to adapt it to the indivisible case. According to
this definition of fairness, every agent i should receive from the allocation at least
what she would receive in the worst case if she had to partition the objects into n
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bundles and let the other n−1 agents choose first. In other words, each agent should
receive at least the best (max), among all possible allocations (cuts), of the worst
(min) share of this allocation: Budish (2011) calls it the maximin share. Obviously,
in the cake-cutting case, this notion coincides with proportionality.

Example 12.14 Consider a MARA setting involving two agents with additive
preferences, and four objects {o1, o2, o3, o4}. Let agent 1’s preferences be defined
as follows: u1(o1) = 7, u1(o2) = 2, u1(o3) = 6 and u1(o4) = 10. Then agent 1’s
maximin share is 12, associated to partition {o1o3, o2o4}.

Contrary to proportionality, in the case of additive preferences, maximin share
guarantee is almost always possible to satisfy (Bouveret and Lemâıtre, 2014). Ac-
tually, Procaccia and Wang (2014) have exhibited some MARA-settings where no
allocation guaranteeing maximin shares to everyone can be found, but these in-
stances are rather rare.11 Moreover, Bouveret and Lemâıtre (2014) notice that in
the special case of additive preferences, not only envy-freeness implies proportional-
ity, but also proportionality implies maximin share guarantee. It means that these
properties form a scale of fairness criteria, from the strongest to the weakest.12

This suggests another solution to the fairness vs. efficiency trade-off: try to satisfy
envy-freeness if possible; if not, try to satisfy proportionality if you can; and finally,
as a fallback fairness criterion, maximin share guarantee is almost always possible
to satisfy.

12.3 Computing Fair Allocations

We will now see how challenging computing optimal fair allocations is. To achieve
this, we will among other things study the computational complexity of decision
problems associated with the computation of fair allocations. The input of these
decision problems will include the preference profiles encoded in a given representa-
tion language. Note that if a preference profile is represented with a formula whose
size is superpolynomial in p and n, then even if the decision problem is computa-
tionally easy, finding a fair allocation may remain prohibitive in practice —hence
the relevance of compact representation languages discussed in the previous section.

12.3.1 Maxmin allocations

We start with a bad news: if we make no assumption on the preferences of agents
(beyond monotonicity), then not only is computing an optimal maxmin allocation
computationally hard, but even computing an approximation is (Golovin, 2005).
The argument is simple, and based as usual on a problem known to be hard. In the
11 They also show that it is always possible to guarantee at least 2/3 of the maximin share to everyone.
12 Actually there are two additional criteria in the scale, which we do not discuss here for the sake of

clarity and conciseness.
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partition problem, we are given a collection of (positive) integers C = 〈c1, . . . , cq〉
such that

∑q
i=1 ci = 2k, and we are asked whether there exists I ⊆ {1, . . . , n} with∑

i∈I ci = k. But now take O = C and set the utility functions of two agents as
follows:

u(S) =
{

1 if
∑
x∈S x ≥ k

0 otherwise

The only situation where an allocation with social welfare 1 can be obtained
is when agents receive a bundle such that

∑
x∈S x = k, otherwise any allocation

yields utility 0 (because at least one agent enjoys utility 0). But then any approx-
imation would have to distinguish between these cases, which requires to solve
partition. The careful reader should be skeptical at this point: shouldn’t the com-
plexity precisely depend on the size of the representation of u? In fact, Golovin
(2005) circumvents this problem of compact representation by assuming a “value
query model” where an oracle can provide values of bundles of items in unit com-
putation time. But even using the naive bundle form language, similar conclusions
can be obtained, as long as allocations are required to be complete (Nguyen et al.,
2013).

Getting more positive results requires further restrictions on the preferences of
agents. However, even quite severe restrictions turn out to be insufficient. For in-
stance, the problem remains inapproximable as soon as k ≥ 3-additive functions
are considered (Nguyen et al., 2013, 2014). Note that, as Nguyen et al. (2014) show,
inapproximability results also hold for other “fair” collective utility functions, such
as the Nash product for example.13

In fact, as we shall see now, even the most basic setting remains very challenging.

The Santa Claus problem. Take a cardinal-MARA setting, where utility functions
are modular. This setting has been popularized as the Santa Claus problem (Bansal
and Sviridenko, 2006): Santa Claus has p gifts to allocate to n children having
modular preferences; Santa Claus allocates the gifts so as to maximize the utility
of the unhappiest child (which is exactly the maxmin allocation). First, note that
the problem remains NP-hard even in this restrictive setting (Bezáková and Dani,
2005; Bouveret et al., 2005). Furthermore, the problem cannot be approximated
within a factor > 1/2 (Bezáková and Dani, 2005).

There is a natural integer linear program (ILP) formulation for this problem,
usually called the “assignment LP”. By taking xi,j to be the binary variable taking
value 1 when agent i receives object oj , and 0 otherwise, we set the objective

13 The Nash product is defined as the product of all utilities.
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function to be the maximization of the right-hand side of Inequality (12.6).

maximize y (12.3)
∀i ∈ N, ∀j ∈ O : xi,j ∈ {0, 1} (12.4)

∀j ∈ O :
∑
i∈N xi,j = 1 (12.5)

∀i ∈ N :
∑
oj∈O wi(oj) · xi,j ≥ y (12.6)

The bad news is that just solving the relaxation of this ILP (that is, solving the
problem by assuming that goods are divisible) is not a good approach since the
integrality gap (the ratio between the fractional and the integral optimum) can be
infinite. Indeed suppose there is a single object to allocate, for which every agent
has the same utility, say x. Then the fractional solution would be x/n, while the
ILP would yield 0 (Bezáková and Dani, 2005).

The similarity of the problem with scheduling problems is important to empha-
size (take agents as being the machines, and objects as being the jobs). In particular
the minimum makespan problem, which seeks to minimize the maximal load for an
agent, is well studied. While the objective is opposite, this proved to be a fruitful
connection, and motivated the use of (adapted) sophisticated rounding techniques
(Lenstra et al., 1990). Bezáková and Dani (2005) were among the first to exploit
this connection. They used job truncations techniques to propose an O(n) approx-
imation, later improved to O( 1√

n log3 n
) by Asadpour and Saberi (2010).

Linear programming is not the only possible approach to this problem: branch
and bound techniques have also been investigated (Dall’Aglio and Mosca, 2007). For
this type of algorithms, the quality of the bound is a crucial component. Dall’Aglio
and Mosca (2007) use the “adjusted winner” procedure (that we discuss later on in
this chapter) to compute this bound.

12.3.2 Computing envy-free or low-envy allocations

There is a simple algorithm which always returns an envy-free allocation: throw
all the objects away! However, as discussed already, as soon as a very minimal
efficiency requirement of completeness is introduced, an envy-free allocation may
not exist. In fact, it is computationally hard to decide whether such an allocation
exists (Lipton et al., 2004). If we now ask for an allocation which meets both envy-
freeness and Pareto-optimality, then for most compact representation languages the
problem lies above NP (Bouveret and Lang, 2008). More precisely, this problem is
ΣP

2 -complete for most logic-based languages introduced in Section 12.1, including
the very simple language leading to dichotomous preferences. It also turns out
that the combinatorial nature of the domain plays little role here: even in additive
domains, deciding whether there exists an efficient and envy-free allocation is ΣP

2 -
complete (de Keijzer et al., 2009).

Given this, a perhaps more realistic objective is to seek to minimize the “degree
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of envy” of the society. There are several ways to define such a metric. For example,
Cavallo (2012) defines the rate of envy as the average envy of all agents. Here we
follow Lipton et al. (2004) in their definitions:

eij(π) = max{0, ui(π(j))− ui(π(i))}

Now the envy of the allocation is taken to be the maximal envy among any pair of
agents, i.e.:

e(π) = max{eij(π) | i, j ∈ N} (12.7)

Allocations with bounded maximal envy. One may ask whether allocations with
bounded maximal envy can be found. The question is raised by Dall’Aglio and Hill
(2003) and later addressed by Lipton et al. (2004). We will see that such bounds can
be obtained, by taking as a parameter the maximal marginal utility of a problem,
noted α. The marginal utility of a good oj , given an agent i and a bundle S, is the
amount of additional utility that this object yields when taken together with the
bundle. Then the maximal marginal utility is simply the maximal value among all
agents, bundles, and objects. In an additive setting, this is thus simply the highest
utility that an agent assigns to a good.

The result by Lipton et al. (2004) —which improves upon a first bound of
O(αn3/2) given by Dall’Aglio and Hill (2003)— is then simply stated:

Theorem 12.15 (Lipton et al., 2004) It is always possible to find an allocation
whose envy is bounded by α, the maximal marginal utility of the problem.

Proof (Sketch) First, we introduce the notion of the envy graph associated with an
allocation π, where nodes are agents and there is an edge from i to j when i envies
j. Now take a cycle in this envy graph: a key observation is that by rotating the
bundles held by agents in the direction opposite to that of the cycle (so that each
agent gets the bundle of the agent he envies), we necessarily “break the envy cycle”
at some point. This is so because the utility of each agent in this cycle is increased
at each step of this rotation. Furthermore, agents outside the cycle are unaffected
by this reallocation. Now consider the following procedure. Goods are allocated one
by one. First allocate one good arbitrarily. Now consider the end of round k, and
suppose {o1, . . . , ok} have been allocated, and that envy is bounded by α. At round
k+ 1 we build the envy graph. Next we rotate the bundles as previously described.
As already observed, at some point there must be an agent i that no one envies.
We then allocate object ok+1 to this agent i. Envy is thus at most α.

Example 12.16 Let O = {o1, o2, o3, o4, o5} be a set of objects, and let {1, 2, 3}
be three agents whose additive preferences are defined as follows:
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S o1 o2 o3 o4 o5

u1(S) 1 2 5 3 7
u2(S) 2 6 8 1 5
u3(S) 5 4 4 3 1

The maximal marginal utility is 8. We know that by applying the procedure we are
guaranteed to obtain an allocation with a degree of envy at most 8. Suppose we
allocate the first three items oi to agent i, we thus get π(1) = {o1}, π(2) = {o2},
and π(3) = {o3}. At this step of the procedure, the envy graph is depicted in (i).
For convenience we indicate the degree of envy on each arrow. There are two cycles.
Let us consider for instance the cycle (1,3), and rotate (this corresponds to simply
swapping the resources of agents 1 and 3 here). It happens to be sufficient to remove
the cycle: we obtain the new envy graph (ii). Now we wish to allocate o4. No one
envies 2 nor 3, so we can for instance allocate o4 to 2, resulting in (iii). The graph
is without cycle. We can now give o5 to agent 3, thus obtaining (iv), with a degree
of envy of 3.

1

o1

2

o2

3

o3

(i)

1

2

1

4

1

o3

2

o2

3

o1

(ii)

2
1

o3

2

o2, o4

3

o1

(iii)

1

2

1

o3

2
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3

o1, o5
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1
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Note that in that case, by performing a final rotation, we could obtain en envy-
free allocation.

Observe that the procedure makes no assumption on the preferences of agents.
The result thus shows that it is always possible to have an allocation bounded by
the highest marginal value. Of course, such a bound is tight, as is easily observed
by a scenario involving a single good and two agents with the same utility for it.
In general however, for a given instance, allocations with a much lower envy than
this bound will exist.

Low-envy allocations. Is it possible to design algorithms returning an allocation
with minimal envy, or at least an approximation of it? A critical problem is that
in the case of general preferences, the amount of information that needs to be
transmitted to the algorithm is prohibitive (see Section 12.4). It is thus natural to
consider the same question in restricting the domain considered.

Another technical issue occurs: the minimum degree of envy as defined by Equa-
tion (12.7) is 0 when the allocation is envy-free. While this an intuitive requirement,
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it has an undesirable consequence: any finite approximation would have to be able
to distinguish an envy-free allocation. Unfortunately, as we have seen, this problem
is hard, even in the case of modular preferences. Thus, unless P = NP, there is no
hope for approximation here (remember the same line of argumentation was used
to show inapproximability for maxmin allocations).

To circumvent this, a different measure of envy is considered. The minimum
envy-ratio is defined as:

max
{

1, ui(πj)
ui(πi)

}
When the objective function is to minimize this measure, positive results can be

obtained. Lipton et al. (2004) were the first to address this version of the problem.
They made the additional assumption that agents have the same preferences. In
this context, the greedy procedure proposed by Graham (1969) in the context of
scheduling yields a 1.4-approximation. The procedure is fairly simple: rank the
goods in decreasing order, then allocate them one by one, to the agent whose current
bundle has least value. But Lipton et al. (2004) went further: they showed that it
is possible to achieve an approximation arbitrarily close to 1 with an algorithm
running in polynomial time in the input size (in other words, a Polynomial-Time
Approximation Scheme). When the number of agents is bounded, it is even possible
to get an FPTAS for this minimization problem. Recently, Nguyen and Rothe (2013)
took up this research agenda. When the number of agents is bounded, they obtain
an FPTAS for this minimization problem (and other degree measures), even when
agents have different preferences. On the other hand, they showed that when the
number of agents is part of the input, it will not be possible to obtain (in polynomial
time) an approximation factor better than 3/2, under the usual P 6= NP assumption.

Envy-freeness and ordinal preferences. Let us conclude this overview of computa-
tional aspects of envy-freeness with a quick look at ordinal preferences. An inter-
esting feature of envy-freeness is that this notion does not require any interpersonal
comparison of preferences. As a result, envy-freeness is a purely ordinal notion: this
fairness criterion is properly defined as soon as the agents are able to compare pairs
of bundles (which is not the case for maxmin fairness, requiring cardinal prefer-
ences). The ordinal analogous of the problem studied by Lipton et al. (2004) for
numerical preferences, namely, the problem of finding an efficient and envy-free al-
location with ordinal preferences (using pairwise dominance for lifting preferences
from objects to bundles) has been studied by Brams et al. (2004); Brams and King
(2005) and later by Bouveret et al. (2010); Aziz et al. (2014).

The main difficulty here is that, unlike additivity for numerical preferences, only
requiring responsiveness (and monotonicity, for the two latter references) leaves
many pairs of bundles incomparable. For example, if we have o1 . o2 . o3 . o4,
responsiveness implies that o1o2 � o3o4, but leaves o1o4 and o2o3 incomparable.
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This calls for an extended version of envy-freeness that takes into account incom-
parabilities. Brams et al. (2004); Bouveret et al. (2010) propose the two notions of
possible and necessary envy:14 basically, agent i possibly (resp. necessarily) envies
agent j if π(i) 6�i π(j) (resp. π(j) �i π(i)). The recent work of Aziz et al. (2014)
further extends and refines these notions by introducing a new definition of ordinal
dominance based on stochastic dominance.

On the positive side, it turns out that the problem of determining whether a
possible envy-free efficient allocation exists is in P (Bouveret et al., 2010) for strict
preferences, for different notions of efficiency (completeness, possible and necessary
Pareto-efficiency). On the negative side, things seem to be harder (NP-complete)
for necessary envy-freeness, and as soon as ties are allowed (Aziz et al., 2014).
Note also that in the case of ordinal preferences, defining measures of envy makes
less sense than for numerical preferences. That means that it seems difficult to use
approximation to circumvent the computational complexity of the problem.

12.3.3 Other fairness measures

In this section we have looked in details at the computation of maxmin or low-
envy allocations. Of course, there are many other criteria of fairness of interest. In
particular, it is natural to not only focus on the worst-off agent, but to define a more
general measure of the inequality of the society and to rely on a generalized Gini
social-evaluation function. This class of functions is also known as ordered weighted
averages (Yager, 1988). The computation of these functions has been studied by
Lesca and Perny (2010). They investigate in particular how techniques of linear
programming (such as the one mentioned in Section 12.3.1) can be adapted so
to handle these problems. Recently, the problem of computing inequality indices
in combinatorial domains has been considered by Endriss (2013). Also, Vetschera
(2010) came up with an approach generalizing the branch and bound approach of
Dall’Aglio and Mosca (2007) to a wider class of objective functions: more precisely,
for any setting involving the division of indivisible goods between two agents, and
for which the objective function is maximum when the utilities of both players are
equal (in the hypothetical continuous case). In that case, the bound based on the
“adjusted winner” split, which will be presented in section 12.4.1, is not valid any
longer.

12.4 Protocols for Fair Allocation

The centralized “one-shot” approaches to fair resource allocation we have considered
so far work in two steps: first the agents fully reveal their preferences (may them be
ordinal or numerical) to the benevolent arbitrator, then this arbitrator computes a
14 Actually Brams et al. (2004) use a different terminology, but the idea is the same.
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satisfactory allocation (thanks to an algorithm) and gives the objects to the agents.
This approach has two main drawbacks: (i) the elicitation process can be very
expensive or agents may not be willing to fully reveal their preferences; and (ii)
agents may be reluctant to accept a solution computed as a black-box.

Regarding (i), there is not much we can do in the worst case : when preferences
are not modular, the communication load that is required to compute optimal (or
indeed approximated) fair solutions becomes a fundamental barrier. This can be
stated more formally:

Theorem 12.17 (Lipton et al., 2004; Golovin, 2005) Any deterministic algorithm
would require an exponential number of queries to compute any finite approximation
for the minimal envy problem (Lipton et al., 2004), or maxmin allocation (Golovin,
2005).

Such lower bounds can be obtained by borrowing techniques from the communi-
cation complexity literature (see also Chapter 10, Boutilier and Rosenschein, 2015).

The incremental protocols we discuss in this section take a different approach:
they prescribe “simple” actions to be taken by the agents at different stages of the
process (comparing two bundles, choosing an item, etc.), and they (typically) do
not require heavy computation from the central authority. They sometimes do not
involve any central computation at all (beyond verification of the legality of agents’
actions) nor preference elicitation, and may even work in the absence of a central
authority in some cases, as we shall see.

Before we go on and present original protocols, note that some of the algorithms
presented earlier in this chapter can be readily interpreted as protocols. This is true
in particular of the procedure of Lipton et al. (2004): allocate items sequentially,
and each time a new item is assigned, ask agents to point to agents they envy (note
that this does not require to elicit preferences). When a cycle occurs, rotate the
bundles as indicated in the procedure, and ask again agents who they envy, etc. Of
course, as we have already seen, the guarantees of such a protocol are not so good.
We will see that better guarantees can be given, at the price of restrictions on the
number of agents, or on the type of preferences.

12.4.1 Protocols for two agents

The adjusted winner procedure. This procedure has been used in various contexts
(Brams and Taylor, 2000). It works for two agents, with additive utility functions.
At the end of the procedure, one item may need to get split, but as we don’t know
beforehand which one, it has to assume that all items are divisible. The technique
is nevertheless inspiring, and can be used to compute a bound in the indivisible
case (Dall’Aglio and Mosca, 2007), as already mentioned.

In the first phase of the algorithm (the “winning phase”), goods are allocated
efficiently, that is, each good is assigned to the agent who values it the most. At
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the end of this stage, either u1 = u2 and we are done, or some agent (say r, the
richest) has a higher utility than the other (say p, the poorest) and the “adjusting
phase” can begin. During this phase, goods are transferred from the richest to the
poorest, in increasing order of the ratio ur(o)

up(o) (note that the ratio is necessarily
≥ 1). The algorithm stops when either both agents enjoy the same utility, or the
richest becomes the poorest. Suppose this happens under the transfer of good g:
then g is split so as to attain equitability, i.e. the utility of both agents is equal. To
get this equitable outcome, the richest gets a fraction of g computed as follows:

up(g) + up(π(p) \ {g})− ur(π(r) \ {g})
ur(g) + up(g)

The allocation is thus also a maxmin allocation. In fact, it has several desirable
properties:

Theorem 12.18 (Brams and Taylor, 2000) The adjusted winner procedure returns
an equitable, envy-free, and Pareto-optimal allocation.

Recall that here “equitable” means that the two agents enjoy the same utility at
the end of the protocol.

Example 12.19 Let O = {o1, o2, o3, o4, o5} be a set of objects.

S o1 o2 o3 o4 o5

u1(S) 1 2 5 3 7
u2(S) 2 6 8 1 5

After the winning phase, agent 2 gets {o1, o2, o3} and agent 1 gets {o4, o5}. The
utility of agent 2 is 2+6+8=16 while the utility of agent 1 is 10. Agent 2 will transfer
goods to agent 1, starting with o3 (with ratio 8

5 , while o1 has 2
1 , and o2 has 6

2 ).
But once we do that agent 1 becomes the richest: the good o3 has to be split, with
agent 2 obtaining (5+10-8)/ 13 = 7/13 of the good g (and the rest for agent 1).
This provides each agent a utility ' 12.3.

The undercut procedure. Unlike the adjusted winner, this protocol takes as input
ordinal information (a ranking of the items), and assumes that preferences are
responsive (in fact, Aziz, 2014 has recently introduced a modified version of the
procedure which works for the more general class of separable preferences).

As discussed in Section 12.1, the assumption of responsiveness allows to rank
some of the bundles only: for instance if o1 B o2 B o3, we know among others
that o1o2 � o1o3 � o1. The undercut procedures guarantees to find an envy-
free allocation among two agents, whenever one exists. The procedure runs in two
phases: in the generation phase, agents name their preferred item. If the items are
different, they are allocated to agents asking them, otherwise they are placed in the
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contested pile. This is iterated until all the items are either allocated or placed in
the pile. Observe that at the end of the generation phase, each agent holds a bundle
that she values more than the bundle held by the other agent. The main role of the
protocol is then to implement a split of the “contested” items that will lead to an
envy-free allocation. The key step is to let agents reveal what is called their minimal
bundles (they may have several of them): a minimal bundle for agent x is a set of
items that is worth at least 50% of the value of the full set of items for x —we say
that such a bundle is envy-free (EF) to agent x— and such that it is not possible
to find another bundle ordinally less preferred to it, which would also be EF to x.
So for instance, with o1 B o2 B o3, if o1o3 is EF to agent 1, then o1o2 cannot be
a minimal bundle. Once minimal bundles have been named, the protocol chooses
randomly one of them as a proposal (say S1, that of agent 1). Next agent 2 has the
opportunity to either accept the complement of the proposal, or to undercut the
proposal, by modifying the proposed split and take for herself a bundle strictly less
preferred than S1.

Theorem 12.20 (Brams et al., 2012) If agents differ on at least one minimal
bundle, then an envy-free allocation exists and the undercut protocol returns it.

Example 12.21 We borrow an example from Brams et al. (2012), where both
agents declare the same ranking of five items o1B o2B o3B o4B o5. In that case an
envy-free split looks unlikely because agents have exactly the same preference: thus,
after the generation phase, all items go to the contested pile. Now assume agent
1 announces o1o2 as her only minimal bundle, while agent 2 announces o2o3o4o5.
The minimal bundles differ: there must be an envy-free allocation. Let us see why.
Suppose o1o2, the minimal bundle of agent 1, is chosen for proposal. Then agent 2
will reject this proposal because o3o4o5 is not EF to her (as she declared o2o3o4o5 as
minimal). It means that o1o2 must be EF to agent 2. But as o1o2 is not minimal to
her, she may propose to take o1o3 which is the next ordinally less preferred bundle,
and so must still be EF to her. So agent 2 may propose this split, letting agent 1
with o2o4o5. As on the other hand, o1o2 was minimal to agent 1, it must be that
o1o3 is worth less than 50%, and so o2o4o5 is EF to agent 1. This allocation is
envy-free.

Compared to the adjusted winner, this protocol has the advantage to only require
ordinal preferential information. But note that it may not be able to produce a
complete envy-free allocation (at least in a deterministic way) Suppose we run the
protocol on Example 12.19. Agent 1 reports o5 B o3 B o4 B o2 B o1, while agent 2
reports o3Bo2Bo5Bo1Bo4. Thus, after the generation phase, agent 1 gets o5o4 and
agent 2 gets o3o2: item 1 is the only contested item and thus no complete envy-free
allocation of the pile can be proposed (but assigning this last item randomly may
still yield an envy-free allocation).
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12.4.2 Protocols for more than two agents

Picking sequences. Can we take inspiration from the generation phase of the under-
cut procedure and allocate goods incrementally? This is soon going to be unprac-
tical as the number of agents grows, since all goods will be likely to be contested.
But an alternative solution is to fix beforehand a sequence among agents. This is
viable even for a large number of agents, and only requires a partial elicitation of
the agents’ preferences (or, at the extreme, no elicitation at all). From the point of
view of agents, the assumption of responsiveness of preferences suffices to decide
simply which item to pick.

More precisely, the benevolent arbitrator defines a sequence of p agents. Every
time an agent is designated, she picks one object out of those that remain. For
instance, if n = 3 and p = 5, the sequence 12332 means that agent 1 picks an object
first; then 2 picks an object; then 3 picks two objects; and 2 takes the last object.
Such a protocol has very appealing properties: first, it is very simple to implement
and to explain15 and secondly, it frees the central authority from the burden of
eliciting the agents’ preferences. Seen from the point of view of communication
complexity, implementing such a protocol just requires the exchange of O(m log(m))
bits of information (at each of the m steps of the protocol, the chosen agent just
needs to send the identifier of the object she wants to pick, which requires O(log(m))
bits). A classical centralized protocol as the ones we discussed earlier would require
Θ(nm log(m)) bits of information to send the agents’ preferences to the arbitrator
(if they only provide an ordinal information), and Θ(m log(n)) additional bits for
the arbitrator to send the result to the agents.

This protocol has been discussed to some extent by Brams and Taylor (2000),
who focus on two particular sequences, namely strict alternation, where two agents
pick objects in alternation, and balanced alternation (for two agents) consisting of
sequences of the form 1221, 12212112, etc. One can feel intuitively that these kinds
of sequences are quite fair, in the sense that alternating the agents in the sequence
increases the probability of obtaining a fair allocation in the end (for example, the
sequence 1221 is more likely to make both agents happy than 1122, where agent 2 is
very likely to be disappointed). The problem of finding the best (fairest) sequence
has been investigated by Bouveret and Lang (2011), who proposed a formalization
of this problem based on the following hypotheses: (i) the agents have additive
utilities; (ii) a scoring function maps the rank of an object in a preference relation to
its utility value —the agents may have different rankings, but this scoring function
is the same for all agents; (iii) the arbitrator does not know the agents’ preferences
but only has a probability distribution on the possible profiles. In this framework,
the best sequence is just one that maximizes the expected (utilitarian or egalitarian)
collective utility. Even if the precise complexity of the problem of finding the optimal
sequence is still unknown, Kalinowski et al. (2013) have shown, among other things,

15 The less understandable an allocation protocol is, the less likely it will accepted by the agents.
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that the strict alternation policy is optimal with respect to the utilitarian social
welfare, if we consider two agents that can have any preference profile with equal
probability, and a Borda scoring function. This formally proves the intuitive idea
that under mild assumptions, a sequence like 12121212... maximizes the overall
utility of the society.

The descending demand procedure. In this protocol proposed by Herreiner and
Puppe (2002), agents are assumed to have a linear ordering over all subsets of
resources (satisfying monotonicity). An ordering of the agents is fixed beforehand:
one by one, they name their preferred bundle, then their next preferred bundle,
and so on. The procedure stops as soon as a feasible complete allocation can be
obtained, by combining only bundles mentioned so far in the procedure. There may
be several such allocations, in which case the Pareto-optimal ones are selected. It
does not offer any guarantee of envy-freeness, but produces “balanced” allocations,
that is, allocations which maximize the rank in the preference ordering16 of the
bundle obtained by the worst-off agent. As mentioned already, this notion is the
natural counterpart of the egalitarian social welfare in this specific case where linear
orders are available.

Theorem 12.22 (Herreiner and Puppe, 2002) The descending demand procedure
returns a Pareto-efficient and rank-maxmin-optimal allocation.

This protocol is simple and can be used by more than two agents, for a moder-
ate number of goods though (since otherwise the requirement to rank all subsets
becomes unrealistic).

Distributed fair division. When many agents are involved in an allocation, fully
distributed approaches can be well adapted. The main idea is that agents will
start from an initial allocation, and myopically contract local exchanges (or deals)
independently from the rest of the society.17 In particular, this means that agents
can rely on a local rationality criteria which tells them whether to accept or not a
deal. A rationality criteria is local when it can be checked by inspecting only those
agents who modified their bundle during the deal. Ideally, such deals should be
“simple” (for instance, involving only two agents). For instance, based on the Pigou-
Dalton principle (Moulin, 1988), we may conceive a system where only bilateral
deals which diminish the inequality among agents involved are allowed.

The question is whether this type of incremental deal-based protocol has any
chance in the end to converge to an optimal (fair) solution. As discussed by Endriss
et al. (2006), the question is related to the separability (Moulin, 1988, page 43) of
the social welfare ordering considered (not to be confused with the separability of
16 Assuming lower ranks correspond to less preferred bundles.
17 This is similar to the case of housing markets vs. house allocation problems, see Chapter 14 (Klaus

et al., 2015).
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individual preferences). The idea behind separability is the following: suppose that
only a subset of agents are involved in a deal δ. Then, the change in social welfare
caused by δ will always be the same, irrespective of the level of utility of the agents
not concerned by the deal. To grasp the intuition, compare the utilitarian social
welfare (separable), with maxmin (only separable in the weak sense) and the notion
of envy (not separable). Suppose some agents implement a deal (while the rest of
the agents don’t), and that you can observe its outcome. If the sum of utility among
those agents involved in the deal has increased, you know that the overall sum of
utility must have increased as well. But you can never be sure that the min utility of
the society has increased, even though you observe that the min utility among the
agents involved has (because the agent who is currently the worst-off may not be
involved in the deal). Still, the allocation cannot become worse (hence separability
in the weak sense). This is not even the case with envy: the implementation of a local
deal can have negative consequences, since by modifying agents’ bundle the envy of
agents outside the deal (but observing it) can certainly increase. In a series of paper
by Sandholm (1998); Endriss et al. (2006); Chevaleyre et al. (2010), convergence
results are proven for different social welfare measures, domain restrictions, and
deal types. These results typically show convergence of any sequence of deals to
some allocation where no further deal is possible, with guarantees on the quality of
such a final allocation.

For instance, convergence to maxmin allocations by means of locally egalitarian
deals (that is, deals where the situation of the worst-off agent involved has improved)
can still be guaranteed by exploiting the separability of the (stronger) leximin social
welfare. Of course the complexity of the problem has not magically disappeared.
This is witnessed by two types of “negative” results, affecting the complexity of a
single step (i.e. a deal), and the complexity of the sequence of deals as a whole:

• any kind of restriction on deal types ruins the guarantee of convergence in the
general domain (Endriss et al., 2006). This is problematic since, as mentioned,
deals are likely to be simple in practice (for instance, swapping two resources).

• the upper bound on the length of the sequence of deals can be exponential in the
worst case (Sandholm, 1998; Endriss and Maudet, 2005), even when considering
only the simplest type of deals, consisting of moving a single resource from one
agent to another agent (Dunne, 2005).

On the positive side, these approaches can be deployed in the absence of a central
authority, and they enjoy a nice anytime behavior: they return a solution even if
stopped before convergence, and the quality of the obtained allocation usually im-
proves as long as the agents can perform deals (though this may not be theoretically
guaranteed for all social welfare measures, as briefly discussed above).
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12.5 Conclusion

In this chapter we have discussed fair division problems involving indivisible items.
We have seen that this setting poses several challenges, starting from the mere rep-
resentation of agents’ preferences, to the computation of optimal fair allocations
(with maxmin and envy as main illustrations). These difficulties are not necessar-
ily intertwined: we have seen for instance that even with additive preferences, the
algorithmic challenge may remain surprisingly high. Of course the usual warning
is flashing here: these are typically worst-case results, and recent work suggests
that under specific assumptions about the domain considered, it may be possi-
ble to obtain satisfying allocations with high probability (and even compute them
rather easily). For the design of practical interactive protocols, the preference rep-
resentation and communication bottleneck seems more stringent, and indeed most
efforts have concentrated so far on the setting of two agents equipped with addi-
tive, or at least responsive preferences. It is striking though, that very few works
have addressed natural preference restrictions beyond such domains. An impor-
tant question is how such protocols and algorithms will be adopted in practice, for
instance whether agents may manipulate, and whether suggested solutions can be
easily understood and accepted. While the allocation settings discussed here remain
as general as possible, specific features may require dedicated approaches. For in-
stance, agents may have different priority, they may enter the system sequentially,
etc. These aspects (among many others of course) have been investigated in the
matching community, and this leads us to strongly encourage the reader interested
in fair division to jump to Chapter 14 (Klaus et al., 2015). Indeed, in particular
when one resource exactly has to be allocated to each agent, allocation problems
can be readily captured in a matching setting (where stability is the primary focus
of interest). But if agents have priority when selecting their resource, the notion
of envy may only be justified when an agent has higher priority over the agent he
envies. Interestingly, this corresponds to the notion of stability. This illustrates how
the concepts discussed in both chapters can be connected.
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Aziz, for their support, corrections, and very constructive comments.



References

A. Asadpour and A. Saberi. An approximation algorithm for max-min fair allo-
cation of indivisible goods. SIAM Journal on Computing, 39(7):2970–2989,
2010.

H. Aziz. A note on the undercut procedure. In A. L. C. Bazzan, M. N. Huhns,
A. Lomuscio, and P. Scerri, editors, Proceedings of the 13th International Con-
ference on Autonomous Agents and MultiAgent Systems (AAMAS-14), pages
1361–1362, Paris, France, May 2014. IFAAMAS.

H. Aziz, S. Gaspers, S. Mackenzie, and T. Walsh. Fair assignment of indivisible
objects under ordinal preferences. In A. L. C. Bazzan, M. N. Huhns, A. Lomus-
cio, and P. Scerri, editors, Proceedings of the 13th International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS-14), pages 1305–1312,
Paris, France, May 2014. IFAAMAS.

F. Bacchus and A. Grove. Graphical models for preference and utility. In P. Besnard
and S. Hanks, editors, Proceedings of the 11th Conference on Uncertainty in
Artificial Intelligence (UAI-95), pages 3–10, Montréal, Canada, Aug. 1995.
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