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Abstract This chapter introduces two prominent models of collective (multia-
gent) decision making, namely the basic ordinal model, and the utilitarian (numeri-
cal/quantitative) model. These models are then illustrated on three major collective
decision making problems: voting, fair division and auctions. For each of these three
problems we give a formal definition and we discuss the main links with computer
science and artificial intelligence.

1 Introduction

1.1 Collective Decision Making Problems

This chapter focuses on collective decision making (CDM) problems, in which a
group of people (agents) has to make a collective decision cooperatively. The chosen
decision, to be selected among a set of eligible decisions, will engage each agent.
Most procedures presented in this chapter are centralized procedures.

Typical CDM problems examples are: political elections; private everyday votes
(for example, friends choosing a restaurant); fair allocation (for example, dividing
goods in a divorce, allocating courses to students in a university...); a jury seeking
for a consensus in a court.
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The study of CDM problems dates back to Antiquity. The name “social choice”
refers nowadays to the formal study of such collective problems. Nicolas de Con-
dorcet (1743–1794) was one of the first to formalize some CDM problems. His
contribution to the field of voting systems (de Condorcet, 1735) is widely recog-
nized. Other prominent contributors are Kenneth Arrow (born in 1921), celebrated
for his famous impossibility theorem (see page 4), and Amartya Sen (born in 1933),
well known for his work on social inequalities (Sen, 1970).

Classical social choice theory has never been very much concerned about algo-
rithmic issues. This is where computer science and more specifically artificial intel-
ligence and operations research come into play: a recent research field has emerged,
named computational social choice, bringing computer science and social choice
together. Two research directions have appeared: the first one (from social choice
theory to computer science) aims at exploiting social choice theory concepts and
procedures in order to solve problems arising in computer science applications (for
example, aggregation procedures for web page ranking and information retrieval,
using voting for pattern recognition and classification, or computational resource al-
location). The other direction (from computer science to social choice theory) aims
at using notions and methods coming from computer science (representation lan-
guages, complexity, algorithmics, interaction protocols...) in order to solve complex
group decision making problems. This last direction is by far the most important.

Formally, a CDM problem consists of three elements: a set of agents N =
{1, ...,n}; a set of eligible decisions or alternatives X ; an expression of individ-
ual preferences (or sometimes beliefs — we will go back to this later) of each agent
over the alternatives. The expected result is, as the case may be, the choice of a
“socially optimal” alternative, the choice of a set of alternatives, or a ranking of the
alternatives.

Three of the most important sub-fields of social choice are:

• voting: agents (or voters) express their preferences over alternatives (in this case
candidates) and must agree on the choice of a candidate (or a subset of candi-
dates).

• fair allocation: a common resource has to be divided amongst agents expressing
their preferences about the possible shares they can possibly receive.

• judgement aggregation: agents express their beliefs over the real word and must
come up to a common conclusion.

The first two examples above concern preference aggregation (the most frequent
case in social choice), whereas in the last case, belief aggregation is at stake. Belief
aggregation is addressed specifically in Chapter 14 of this volume and will not be
discussed in this one. In the following we are only concerned with preference aggre-
gation, focusing successively on voting, fair allocation, and finally on combinatorial
auctions, which are a special case of resource allocation.

There are many models dedicated to the problem of aggregating individual pref-
erences into a collective one. We will now present the two prominent models on
which most works on CDM are based.
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1.2 The Basic Model: Ordinal Preferences

Let P be the set of total preorders1 on X . In the ordinal model, the preferences of
an agent i are represented by the individual preorder �i∈P .

Let G : Pn →P be a collective preorder aggregation function. The collective
preorder �col= G(〈�1,�2, . . . ,�n〉) (or social welfare ordering) represents the col-
lective preference which results from the aggregation by G of the individual pref-
erence profile 〈�1,�2, . . . ,�n〉. A collectively preferred alternative is an alternative
maximizing the collective preorder �col .

Let us give a simple example of a preorder aggregation procedure: let N(a) be
the number of times for which an alternative a is (one of) the most preferred in the
individual preorders. Now define a �col b ≡ N(a) ≥ N(b). This is obviously a pre-
order. On the other hand, the aggregation which prefers alternative a to alternative
b when a majority of agents prefer a to b is not a preorder, because it may generate
a cyclic collective preference, in which case the preference relation is not transitive
— this is the celebrated Condorcet paradox, see Section 2.

In this context, the centralized CDM problem consists in defining an aggregation
function G having “good” properties. What are these “good” properties for CDM?
We now introduce the main ones.

1.2.1 The Pareto-Efficiency Property and the Unanimity Principle

Informally, an efficient alternative is an alternative which satisfies all agents “as well
as possible”. The simplest and mostly used expression of efficiency is the Pareto-
efficiency property, based on Pareto-dominance. Let 〈�1,�2, . . . ,�n〉 be a prefer-
ence profile. We say that alternative a Pareto-dominates alternative b when a �i b
for all agents, with a �i b for at least one agent (�i designates the strict part of
�i, that is a �i b ≡ [a �i b and not b �i a]). A Pareto-efficient (or Pareto-optimal)
alternative is a non-dominated one. It is such that we cannot switch to another al-
ternative increasing strictly the satisfaction of an agent, without strictly decreasing
the satisfaction of another agent. We say that an aggregation function G satisfies
the Pareto-efficiency property if the alternatives collectively preferred are Pareto-
efficient.

The unanimity principle simply requires that the aggregation function G satisfies
the Pareto-efficiency property.

1.2.2 The Independence of Irrelevant Alternatives (IIA) Property

This natural property asks that for each pair of alternatives a and b, the strict col-
lective preference between a and b (a �col b or b �col a) only depends on the way

1 A preorder � is a binary relation that is reflexive and transitive. In a total preorder (or weak
order), no pair of alternatives is incomparable: x� y or y� x,∀x,y ∈X .
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each agent strictly compares a and b (a�i b or b�i a) — the other alternatives are
irrelevant.

1.2.3 Arrow’s Theorem

Most results in classical social choice theory consist of impossibility or possibility
theorems of the following form: there is no collective decision procedure satisfying
a set of natural and desirable conditions R1, . . . ,Rp, or the set of collective deci-
sion procedures satisfying the set of natural and desirable conditions R1, . . . ,Rp is
exactly the set of procedures of form F. A celebrated example is Arrow’s theorem
(Arrow, 1951). Consider strict preference profiles 〈�1, . . . ,�i, . . . ,�n〉 on X (total
strict orders). Let S be the set of all possible strict profiles. Arrow’s theorem states
that if there are at least 3 alternatives, then any aggregation function G defined on
S n satisfying the unanimity principle and the IIA property is dictatorial, meaning
that there is an agent i such that for any profile P, G(P) = �i.2

1.3 The Utilitarian Model, or the Model of Quantitative
Preferences

The utilitarian model (or numerical or quantitative preference model) represents
the preferences of agent i by an individual utility function ui : X → R. To each
alternative a corresponds a vector 〈u1(a),u2(a), . . . ,un(a)〉 (utilities of a for each
agent) called the utility profile of a.

In order to compare the (quantitative) satisfaction of two agents for a given alter-
native, utilities must be defined on a common scale. But this is not always possible:
interpersonal comparison of utility is a critical question in CDM. Actually, agents
may use their own non commensurable utility scales. However in the following we
will assume (unless explicitly stated) that agents’ utilities are expressed on a com-
mon utility scale.3

Let g : Rn → R be a collective utility aggregation function, and let u : X → R
be the function defined this way: u(a) = g(〈u1(a),u2(a), . . . ,un(a)〉), for any alter-
native a. The function u, called collective utility function or social utility function,
represents the collective preference obtained through aggregation by g of individual
utility functions ui. A collectively preferred alternative is an alternative maximizing
this function u.

Given individual and collective utility functions, we can easily recover the ordinal
model by defining individual and collective preorders on X as follows: for any

2 Arrow’s theorem also holds (in a weaker form) when the individual preferences are preorders
(that is, with possible indifference between alternatives).
3 A straightforward way to obtain a common utility scale, often used in fair allocation problems,
is to normalize the individual utility of each agent relatively to the utility she would get if she was
given all the resource (Kalai-Smorodinsky normalization).
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agent i, a �i b ≡ ui(a) ≥ ui(b), and a �col b ≡ u(a) ≥ u(b). The individual utility
function ui (respectively the collective utility function u) is said to represent the
individual preorder �i (respectively the collective preorder �col). In this way, each
purely ordinal property (such as the Pareto-efficiency property) can be expressed in
the utilitarian model.

The main two collective utility aggregation functions are sum u(a) =

∑i∈N ui(a), and minimum: u(a) = mini∈N ui(a). These two functions respectively
correspond to the main two agendas of the utilitarian model, namely classical util-
itarianism and egalitarianism. Classical utilitarianism (sum) seeks to produce col-
lective utility, irrespective of the agent from which this utility comes from (hence
ignoring any equity concern). On the other hand, egalitarianism (min) seeks to maxi-
mize and equalize at the same time individual utilities: it selects an alternative which
maximizes the satisfaction of the least satisfied agent, hence conveying a very strong
equity flavor.

Classical utilitarianism and egalitarianism are two opposite and extreme attitudes
towards CDM.4 In classical utilitarianism, an agent is a “collective utility producer”.
The marginal collective utility produced by an agent does not depend on her present
degree of individual utility. Hence, the collective preference maximization could
indeed lead to lower the satisfaction of the least satisfied agents, if more satisfied
agents “produce” more utility. Agents must show a high degree of solidarity: some
of them could be sacrificed on the altar of the collective utility maximization. Con-
versely, in egalitarianism, even a large utility increment of an agent already satisfied
does not compensate for a tiny loss of utility of the least satisfied agent.

These two variations of utilitarianism are linked with two different approaches
in philosophy and economics: Rawls (1971) and Sen (1970) for egalitarianism, and
Harsanyi (1955) for classical utilitarianism are often advocated.

The utilitarian model often refers to an efficiency definition which is a refinement
of Pareto-efficiency, namely sum-efficiency. A sum-efficient alternative is an alter-
native maximizing the sum of individual utilities, that is, alternatives maximizing
the sum of individual utilities. A sum-efficient alternative is Pareto-efficient, but the
converse is not true in general.

In the utilitarian model, maximizing the collective utility function yields Pareto-
efficient (or Pareto-optimal) decisions if and only if the aggregation function g is
strictly increasing. This is the case for sum, but not for min. The leximin total pre-
order is a refinement of the total preorder induced on X by min, of which the
maximization always results in a Pareto-efficient alternative.

4 For example, egalitarianism prefers the utility profile 〈10,10,10〉 to the profile 〈9,100,100〉.
Classical utilitarianism prefers 〈1,100,100〉 to 〈66,67,67〉, and even to 〈2,99,99〉. See Section 3
for two families of trade-offs between utilitarianism and egalitarianism.
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1.4 Centralized vs. Distributed CDM

Another essential dichotomy exists — orthogonal to the ordinal versus quantita-
tive/numerical preferences one — namely the way agents interact in the decision
making. In a centralized CDM resolution, a central authority (arbitrator, chairper-
son, Home Office, auctioneer, ...) gathers in a first phase the preferences of the
agents (or at least a part of them, being informative enough for the decision to
be made), and then decides on the optimal alternative and communicates it to the
agents. The interaction phase between the central authority and the agents intended
for collecting preferences is generally called the elicitation phase (the interested
reader can see Chapter 7 of this volume. for more details). In fully distributed CDM
resolution, there is no central authority, agents interact freely, and negotiate to reach
a common consensus. There are also intermediate CDM frameworks, that lie be-
tween centralized resolution and distributed negotiation.

This chapter concerns mostly centralized CDM resolution, because of its impor-
tance, and because distributed decision (in particular negotiation) is considered in
detail in Chapter 20 of this volume.

1.5 Discussion

In practice, the nature of the CDM problem at stake dictates the choice of a par-
ticular model of preferences (ordinal or numerical/quantitative) and type of reso-
lution (centralized or distributed). By way of illustration, voting theory generally
assumes ordinal preferences and centralized resolution; fair allocation with money
(as with auctions), numerical preferences and centralized resolution; some fair allo-
cation problems — such as cake-cutting, see Section 3.5 — ordinal preferences and
distributed resolution.

Some difficulties may impair the use of a centralized CDM model:

• agents might be unable to reveal their preferences or simply refuse to do so,
hence complicating the elicitation phase;

• in the real world, the agents often have intricate preferences that are difficult to
translate into preorders or utilities: agents are often sensitive to several criteria
(see Chapter 7 of this volume), and are often not indifferent to other agents pref-
erences, as well as to some social norms.

However, to be accepted by the agents at stake, the CDM model and resolution
should be based on clear concepts, easy to explain and use.

Finally, we should be aware of the limitations of the standard CDM models pre-
sented above. Their interest can be mostly found for CDM problems having a tech-
nical aspect — typically, the routine allocation of numerous physical resources —
for which direct negotiations are hardly possible, and for which a kind of automatic
processing is required. These models can serve as well to build some technically
relevant solutions, initiating a negotiation process.
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The following sections are devoted to three specific CDM problems. The first
concerns voting, making use of the ordinal model of preferences. The next one
is dedicated to fair allocation problems, for which equity is a strong concern. We
present in the last section the auction problem, a specific allocation problem in
which agents interact in a limited way, and which is solved by the mean of max-
imizing the profit of a particular agent (the auctioneer).

2 Voting

The use of voting procedures for collective decision making is not only of tremen-
dous importance in large-scale political contexts, but it is also more and more ap-
plied in low-stake contexts such as social networks, workplaces or other local com-
munities (and perhaps also societies of autonomous agents), which explains why
it has acquired so much importance in the last fifteen years in the Artificial Intelli-
gence literature. Since there are now hundreds of papers on voting in the mainstream
AI conferences (such as AAAI or IJCAI) and journals (such as AIJ or JAIR) as well
as in more specialised conferences (such as AAMAS), we cannot report on every
research stream and we will only give a brief overview of the main topics (measured
in number of papers). For a finer overview we advise to consult Chapters 2 to 10 of
the Handbook of Computational Social Choice (Brandt et al, 2016b).

2.1 Introduction to Voting Theory

A common assumption in voting theory is that the agents (which will be called ‘vot-
ers’ in this section) have ordinal preferences, and furthermore that these preferences
are linear orders (or rankings) over the set of alternatives. (There are exceptions to
this, such as in approval voting, which will be discussed further.)

Let N = {1, ...,n} be a set of voters, and X = {x1, . . . ,xm} be a set of alterna-
tives, or candidates. A profile is a collection of n votes, where each vote is a linear
order over X :

P = 〈V1, . . . ,Vn〉= 〈�1, . . . ,�n〉

where Vi (also denoted �i) is the vote expressed by voter i.
A resolute voting rule F is a function that maps each profile P to a candidate

F(P) in X , who is the socially preferred candidate.
An irresolute voting rule F is a function that maps each profile P to a nonempty

subset of X : F(P) is the set of socially preferred candidates, called cowinners;
the candidate that will be chosen in the end will be one of the candidates of F(P),
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obtained by means of a tie-breaking mechanism whose specification is outside the
definition of F .5

When there are only two candidates a and b, the arguably most reasonable irres-
olute rule is the majority rule:

maj(V1, . . . ,Vn) =

{a} if a strict majority of voters prefers a to b
{b} if a strict majority of voters prefers b to a
{a,b} otherwise

May’s theorem (1952) gives an axiomatic characterisation of the majority rule.
Things become more complicated when the number of candidates is at least 3.

We now give an incomplete (but representative) list of voting rules. Unless stated
otherwise, we define only their irresolute version; again, a resolute version can be
obtained by composition with a tie-breaking mechanism.

A positional scoring rule is defined by a vector s = 〈s1, . . . ,sm〉 of m integers,
with s1 ≥ . . . ≥ sm and s1 > sm: each time voter i ranks candidate x in position j, x
gets a score scorei(x) = s j; the cowinners for the scoring rule Fs are the candidates
maximizing s(x) = ∑

n
i=1 scorei(x). Here are three important examples of positional

scoring rules:

• plurality: s1 = 1, s2 = . . .= sm = 0 (the cowinners are the candidates ranked first
most often);

• veto (or antiplurality): s1 = s2 = . . . = sm−1 = 1, sm = 0 (the cowinners are the
candidates ranked last least often);

• Borda: s1 = m−1, s2 = m−2, . . . sm = 0.

Consider the profile P composed of one vote c � a � b � d, two votes a � b �
d � c and two votes d � b� c� a: the cowinners for plurality are a and d; for Borda
and veto, it is b.

Another important family of voting rules is that of the rules based on the majority
graph. Given two candidates x and y, and a profile P, let NP(x,y) be the number
of voters who prefer x to y in P. The majority graph MP associated with P is the
directed graph whose vertices are the candidates, and which contains an edge from
x to y if and only if NP(x,y)> n

2 . A voting rule is based on the majority graph if the
cowinners can be computed from MP.

A candidate x is Condorcet winner for P if for any y 6= x, we have NP(x,y)> n
2 ,

that is, if it beats every other candidate in a pairwise duel by a majority of votes.
Clearly, x is Condorcet winner for P if MP contains an edge from x to every other
candidate. Of course, when there exists a Condorcet winner, it is unique. However,

5 The reason why we sometimes need irresolute rules is the possibility of a tie: suppose for instance
that we have two candidates a and b, n = 2q voters, and a profile P containing q votes a � b and
q votes b � a. For an irresolute voting rule, we simply let F(P) = {a,b}, and the final winner
will be chosen by the tie-breaking mechanism. For a resolute rule, however, we have to specify
the tie-breaking mechanism as part of the rule. For this, a choice must be made: either we give up
neutrality and use a predefined priority relation over candidates; or we give up anonymity, and use
predefined a priority relation over voters or sets of voters.
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for some profiles, there is no Condorcet winner (see the example below). A voting
rule is Condorcet-consistent if it elects the Condorcet winner when there exists one.

The majority graph MP associated with the previous profile P is given in Figure
2.1. Each candidate being dominated by another candidate, there is no Condorcet

a

b

c

d

Fig. 1 Majority graph MP

winner for P. If the first voter, instead of voting c � a � b � d, had voted c � b �
a� d, then the edge a→ b would have been replaced by an edge b→ a and b would
have been a Condorcet winner.

Here are three examples of rules based on the majority graph:

• Copeland: the Copeland score of a candidate x with respect to a profile P is the
number of candidates that x beats in the majority graph MP, plus half the number
of candidates for which there is a pairwise tie with x (there is a pairwise tie
between x and y if MP contains neither an edge from x to y nor one from y to x).
The Copeland (co)winners are the candidates with largest Copeland score. For
example, for the profile P above, the Copeland winners are a and b.

• Slater: a Slater order for P is a linear order on X minimizing the number of
edges disagreeing with MP. A Slater winner is a candidate ranked first in some
Slater order. For the profile P above, the unique Slater order is a � b � d � c,
with only one disagreement with MP (about (a,c)), and the Slater winner is a.

• Banks: for S⊆X , let M↓SP be the restriction of MP to S. M↓SP is a maximal acyclic
subtournament of MP if M↓SP is acyclic and for each S′ such that S ⊂ S′ ⊆X ,
M↓S

′

P is not acyclic. Then x is a Banks winner if x is non-dominated in a maximal
acyclic subtournament of MP. For the profile P above, the maximal acyclic sub-
tournaments of MP are obtained for {a,b,d}, {a,c} and {b,c,d}, and the Banks
winners are a, b and c.

Clearly, these three rules are Condorcet-consistent. For a survey of rules based
on the majority graph, with a focus on computation, see Brandt et al (2016a).

The weighted majority graph, or pairwise comparison matrix WP is defined by:
for each x,y∈X , x 6= y, WP(x,y) is the number of voters who prefer x to y minus the
number of voters who prefer y to x. A voting rule is based on the weighted majority
graph if the (co)winners can be computed from the weighted majority graph (or
pairwise comparison matrix) WP.

Consider the profile Q:
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4 voters: a� b� c� d
2 voters: b� c� d � a
3 voters: c� d � a� b

The weighted majority graph for Q is

a b c d
a − 5 −1 −1
b −5 − 3 3
c 1 −3 − 9
d 1 −3 −9 −

Here is a rule based on the weighted majority graph: the Simpson (or maximin)
rule outputs the candidates maximizing miny6=x WP(x,y). The maximin winner for
Q is a, with miny6=a WQ(a,y) = −1. Clearly, miny6=x WP(x,y) > 0 if and only if x is
a Condorcet winner for P, and there cannot be two candidates with this property,
therefore, the maximin rule is Condorcet-consistent.

Another rule based on the weighted majority graph is the Kemeny rule, defined
as follows: the Kemeny score K(V,P) of a linear order V with respect to profile P
is defined by K(V,P) = ∑(x,y)∈X ,x 6=y WP(x,y). A Kemeny consensus for P is a linear
order V ∗ maximizing K(V ∗,P), and a Kemeny winner is a candidate ranked first in a
Kemeny consensus. The Kemeny rule is Condorcet-consistent as well. The Kemeny
rule can be used a voting rule, but perhaps even more so as a social welfare function
(outputting the set of Kemeny consensuses). Also, it is easily adaptable to truncated
votes, which explains why it is used for the aggregation of rankings of web pages
given by different search engines (Dwork et al, 2001). On profile Q, the Kemeny
consensus is a� b� c� d, with Kemeny score 18.

Some Condorcet-consistent rules are not based on the weighted (and a fortiori,
unweighted) majority graph. Here is an example: the Dodgson rule6 is defined as
follows: for each x∈X , D(x) is the smallest number of elementary changes needed
for making x a Condorcet winner, where an elementary change consists in swapping
two adjacent candidates in a vote.

In order c to become a Condorcet winner for Q, it has to move one position up
in two out of the first 6 votes; as for a, it needs to move two positions up in one of
the last 5 votes; b and d need respectively 3 and 7 elementary changes in order to
become Condorcet winners: therefore, a and c are the Dodgson cowinners for Q.

Here are now two rules that proceeds by successive rounds. First, single trans-
ferable vote (STV) proceeds in n−1 rounds, as follows:

1. let y be the candidate ranked first by the smallest number of voters (using a tie-
breaking mechanism if necessary);7

2. eliminate y; the votes where y was ranked first are ‘transferred’ to the voter’s
preferred candidate among those who remain;

6 Charles Dodgson was better known under the name of Lewis Carroll.
7 Another way of handling ties consists in considering all tie-breaking possibilities and gather the
corresponding winning candidates; the resulting rule is called the parallel universe version of STV
(Conitzer et al, 2009).
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3. iterate the process until there remains only one candidate.

Consider the profile R containing 3 votes a� d � b� c, 4 votes b� d � a� c, 3
votes c� d � a� b and 2 votes d � c� b� a. At the first round, d is eliminated; the
votes of the two voters who preferred d are transferred to their second choice, that
is, c. At the second round, we have the reduced following profile: 3 votes a� b� c,
4 votes b � a � c, 3 votes c � a � b and 2 votes c � b � a: a is eliminated. At the
last round, only b and c remain; 7 voters out of 12 prefer b to c, and the winner is b.

When there are only three candidates, STV coincides with plurality with runoff,
which is defined more generally as follows: the first round selects the two candidates
with the largest plurality scores (again, using tie-breaking if necessary), and the
winner of the second round is selected according to majority.8

Social choice theorists have studied some desirable properties of voting rules.
Condorcet-consistency is one of them; note that no positional scoring rule is Con-
dorcet-consistent (Moulin, 1988), and that STV and plurality with runoff are not
Condorcet-consistent either. We give three other important properties, which for the
sake of brevity we define for resolute rules only:

• monotonicity: when x is the winner for profile P, it remains the winner for a
profile obtained from P by moving x up in some vote, the rest being unchanged;

• participation: when x is the winner for P, the winner for a profile obtained from
P by adding one more vote is either x, or a candidate which the new voter prefers
to x;

• reinforcement: when x is elected separately by two profiles, it is also elected by
their union.

• clone-proofness: if a candidate x is cloned into a set of clones {x1, . . . ,xp}, and
assuming that these clones of x will be ranked contiguously (in an arbitrary order)
in each vote, and that the rest of the vote is equal to the vote before x was cloned,
then the winner after cloning x will be (a) the same winner as before cloning x, if
this winner was not x, and (b) one of the clones of x, if the winner was x.

For instance, positional scoring rules satisfy monotonicity, participation and re-
inforcement, but not clone-proofness; Copeland and maximin satisfy monotonicity,
but not participation, reinforcement, nor clone-proofness; more generally, as soon as
there are at least 4 candidates, Condorcet-consistency is incompatible with partici-
pation and with reinforcement. STV fails monotonicity, participation, reinforcement
and Condorcet-consistency, but satisfies clone-proofness. Plurality with runoff fails
to satisfy all these properties! For a survey on voting rules and their properties, see
Brams and Fishburn (2004) and Zwicker (2016).

In approval voting (see Laslier and Sanver, 2010 for an extensive survey), the in-
put is different: each voter specifies an approval ballot, which is subset of candidates
she approves; the cowinners are the candidates approved by the largest number of
voters. After adapting the properties we listed above to approval ballots, we obtain

8 Plurality with runoff is used for political elections in many countries, such as France. STV –
arguably better than plurality with runoff – is used for political elections in some countries such as
Ireland and Australia.
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that monotonicity, participation, reinforcement and clone-proofness are satisfied by
approval voting, and that Condorcet-consistency is not.

2.2 Computing Voting Rules

Many voting rules are computable in polynomial time. This is the case for positional
scoring rules and plurality with runoff, that are computable in time O(nm), and for
Copeland, Simpson, and STV9, computable in time O(nm2).

But for some other rules, winner determination is hard. The first article that shows
that a voting rule is computationally hard is (Bartholdi et al, 1989b), which shows
that Dodgson and Kemeny rules are NP-hard. The exact complexity of the prob-
lem was determined by Hemaspaandra, Hemaspaandra and Rothe (1997): deciding
whether x is a Dodgson winner is ΘP

2 -complete, that is, needs a logarithmic number
of calls to NP-oracles.

The Kemeny, Slater and Banks rules are also hard to compute. Deciding if x is
a Kemeny winner is ΘP

2 -complete (Rothe et al, 2003).10 Deciding if x is a Banks
winner is NP-complete (Woeginger, 2003); however, it is possible to find an arbi-
trary Banks winner in polynomial time by a greedy algorithm (Hudry, 2004b). Note
that when comparing Banks to Kemeny, an important difference is that for Banks,
since winner determination is “only” in NP, we can always find a succinct certifi-
cate for verifying that x is a winner (such a certificate is the subset S such that M↓SP is
maximal acyclic), while for Kemeny, certificates are exponentially large (unless the
polynomial hierarchy collapses). Finally, winner determination for the Slater rule is
NP-hard, even under the restriction that ties between candidates do not occur (Ailon
et al, 2005; Alon, 2006; Conitzer, 2006); but it is not known whether the problem is
in NP or not.

These hardness results do not mean that we should give up using these rules,
especially when they have good properties. Here are three ways of dealing with
hardness.

First, practical computation: sometimes using a translation into a well-known
setting with good solvers, such as integer linear programming; and sometimes using
specific heuristics.

Second, approximation: interestingly, a polynomial approximation algorithm of
a voting rule defines a new voting rule — sometimes already known under an
other name, sometimes not. For example, let us consider the Tideman rule, defined
as follows: if x,y are two candidates, let Deficit(x,y) = max(0,1+ bN(y,x)−N(x,y)

2 c)
(Deficit(x,y) is the number of votes which x needs in order to win against y, if that is
possible) and the Tideman score is defined by T (x) = ∑y6=x Deficit(x,y). The Tide-
man winner is the candidate minimizing the Tideman score. This rule is computable
in O(nm2), and is a good approximation of the Dodgson rule, in the following sense:

9 For its version where ties are broken as soon as they appear.
10 For the more general problem of the computation of median orders, see Hudry (2004a).
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under the assumption that the profiles are uniformly distributed (also called impar-
tial culture assumption), the probability that a Tideman winner is a Dodgson winner
converges asymptotically towards 1 when the number of voters tends to infinity
(McCabe-Dansted et al, 2008). Also, sometimes it is possible to design an approx-
imation of a voting rule that not only is easier to compute than the original rule,
but also satisfies more desirable properties! For instance, while the Dodgson rule
does not satisfy monotonicity, monotonic polynomial approximation of it have been
designed by Caragiannis et al (2009).

Third, fixed-parameter tractable algorithms: sometimes a rule is hard but be-
comes polynomial-time computable when the number of candidates is fixed; this is
the case for instance for the Kemeny rule, for which winner determination can be
made by inspecting each of the m! orders and computing their scores in polynomial
time.

These following three handbook chapters review the complexity, the approxima-
tion, and the practical computation of these rules that are hard to compute: Brandt
et al (2016a) for rules based on the majority graph, such as Banks or Slater; Fischer
et al (2016) for rules based on the weighted majority graph, such as Kemeny; and
Caragiannis et al (2016a) for other rules, such as Dodgson.

2.3 Voting on Combinatorial Domains

In many contexts, a decision has to be taken over several variables that may be
intercorrelated. Two typical examples:

• multiple referenda: variables correspond to binary issues. For example, the inhab-
itants of a town may have to decide whether the town should build a swimming
pool or not, and whether it should build a tennis court or not.

• committee elections: for example, a president, a vice-president and a secretary
have to be elected, and some candidates (not necessarily the same ones) run for
these positions. Sometimes there are no specific positions and the aim is just to
elect k people.

In these situations, the space of candidates is a combinatorial domain: it consists
in a Cartesian product X = D1×·· ·×Dm, where Di is a finite domain of values for
variable Xi.

When the preferences of a voter on the values of a variable do not depend on the
values of other variables, there are said to be separable. When all the voters have
separable preferences, the vote can be decomposed into several independent voting
processes, each bearing on a variable: for instance, there will be a vote about the
swimming pool, and independently, a vote about the tennis court. Problems arise
when some voters have nonseparable preferences. Consider the following example:
there are two binary variables P (build a swimming pool), T (build a tennis court),
and five voters whose preferences are
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voters 1 and 2: PT � PT � PT � PT
voters 3 and 4: PT � PT � PT � PT
voter 5: PT � PT � PT � PT

A first problem is concerned with the way the voters can express their prefer-
ences on {S,S} and on {T,T}. This is not a problem for voter 5, whose preferences
are separable. On the other hand, for voters 1 to 4, this is problematic. Take for
example voter 2. If she votes for the swimming pool, she can favour, according to
the votes of other voters, ST (her best candidate) or ST (her worst candidate); and
if she votes against the swimming pool, she can favour one of her two intermediate
candidates. In both cases, she can feel regret once the final outcome of the vote is
known. A second problem is that the outcome of the vote can be extremely bad. If
the voters majoritarily vote ‘optimistically’, the outcome will be ST , which is the
worst alternative for all voters but one. Such paradoxes have been studied under the
name multiple election paradoxes (Brams et al, 1998; Lacy and Niou, 2000).

When there is no guarantee that voters have separable preferences, the decompo-
sition into independent voting processes is thus a bad idea, and other solutions must
be found. There is no perfect solution; some possibilities:

1. ask voters to specify their preference relation explicitly on the set of all alterna-
tives.

2. restrict the possible combinations of values for which one can vote.
3. ask voters to report a small part of their preference relation (e.g., their top alter-

native), and apply a voting rule that needs only this information (e.g., plurality).
4. ask voters to report their preferred alternative(s) and complete their preferences

using a distance between alternatives.
5. use a compact preference representation language in which the voters’ prefer-

ences will be represented succinctly.
6. sequential voting: vote about the variables one ofter the other, and communicate

the outcome for a variable to the agents before they vote on the next variable.

One has to keep in mind that there are Π1≤i≤m|Di| alternatives. Therefore, as
soon as there are more than three or four variables, Solution 1 is unrealistic.

Solution 2 is somewhat arbitrary: who decides which combinations are allowed?
Moreover, in order this method to be realistic, the number of possible combinations
has to be limited to a small number: voters thus express their preferences on a very
small part of the set of alternatives.

Solution 3 is likely to give completely insignificant results as soon as the number
of variables is significantly larger than the number of voters (2m� n). For example,
consider 5 voters and 6 binary variables, that is, 26 candidates, and choose plurality
as the voting rule; one can expect the votes to be completely scattered, for example
001010: 1 vote; 010111: 1 vote; 011000: 1 vote; 101001: 1 vote; 111000: 1 vote; all
other candidates: 0 vote. This solution is then completely pointless.

Solution 4 presupposes the existence of a natural and objective (voter-independent)
distance between alternatives. It is used, among others, for defining the minimax
committee election rule (Brams et al, 2007), and other rules, as well as in be-
lief merging (see Chapter 14 of this volume). This solution is communicationwise
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cheap; it is however more costly in terms of computation, and it requires a signifi-
cant domain restriction.

Solution 5 comes down to aggregate preferences specified in a compact repre-
sentation language (see Chapter 7 of this volume), such as CP-nets. It is potentially
highly costly in terms of computation.

Finally, Solution 6 is an interesting trade-off: it is relatively cheap in communi-
cation and computation, and it is applicable to nonseparable preferences. However,
in order it to work well, the following domain restriction has to be made (Lang and
Xia, 2009): there must exist a linear order on the variables X1 > .. . > Xp, common
to all voters, such that the preferences of each voter on Xi are independent of the
values of Xi+1, . . . ,Xp: for example, for the choice of a collective menu, MainDish
> FirstCourse > Wine looks reasonable enough.

More details on voting over combinatorial domains can be found in (Lang and
Xia, 2016).

2.4 Computational Barriers to Strategic Behaviour

A key problem in voting theory is that in some circumstances, some voters have an
incentive to report insincere preferences in order to give more chances of winning to
a candidate they prefer to the one who would be elected normally. Such a behaviour
is called manipulation.

Consider for example plurality with runoff applied to the following profile: 8
votes a � b � c, 4 votes c � b � a and 5 votes b � a � c. At the first round, c is
eliminated, and at the second round, b is elected. Suppose now that 2 of the 8 first
voters (those whose preference is a � b � c) decide to vote c � b � a (all other
votes being unchanged). The new profile is then composed of 2 votes c � a � b,
6 votes a � b � c, 4 votes c � b � a and 5 votes b � a � c. At the first round, b
is eliminated, and at the second round, a is elected. Since the actual preferences of
these two voters are a� b� c, they are better off, since a is now the winner.

This example is not an isolated case. Indeed, the Gibbard-Satterthwaite theo-
rem (Gibbard, 1973; Satterthwaite, 1975) shows that when there are at least three
candidates, any voting rule which is nondictatorial and surjective (that is, for each
candidate x, there is a profile for which x wins) is manipulable: for some profiles,
some voters will have an incentive to report insincere preferences.

Although it is not possible to find a reasonable rule which is not manipulable, a
way of limiting the impact of manipulation consists in making sure that a manipula-
tion, whenever there is one, is hard to compute; this has lead computer scientists to
study the computational resistance to manipulation. In practice, one considers that
for a given voting rule, if finding a manipulation is NP-hard, then one can assume
that voters – whose rationality is limited – will give up the idea of looking for one.
Let us state the problem more formally by defining the following problem called
COALITIONAL CONSTRUCTIVE MANIPULATION: for a voting rule F , given a dis-
tinguished candidate x ∈X , and the votes �1, . . . ,�k of voters 1, . . . ,k, is there a
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vote �i for each of the voters i = k+1, . . . ,n such that x is elected by application of
F on the profile 〈�1, . . . ,�k,�k+1, . . . ,�n〉 ?

The first articles on this topic have been written by Bartholdi et al (1989a) and
Bartholdi and Orlin (1991). Then this question came back in the early 2000s, with
Conitzer and Sandholm (2002a). Since then, more than thirty papers on the problem
of complexity of (several variants of) manipulation have been written. They are sur-
veyed by Conitzer and Walsh (2016). (See next section for another interpretation.)

Let us start by an example illustrating the constructive manipulation of the Borda
rule by a single voter. Consider the following profile: P = 〈a� b� d � c� e, b�
a � e � d � c, c � e � a � b � d, d � c � b � a � e〉. The current Borda scores
(from these 4 votes) are a: 10, b: 10, c: 8, d: 7 and e: 5. Obviously, the last voter
can make a or b win. Can she make c win? Yes, by ranking c first, then ranking in
second position the least threatening candidate (e), then the least threatening after e
(d), then a, then b (or vice versa). The final scores are then a: 11; b: 10; c: 12; d: 9;
e: 8. Can she make d win? The same algorithm leads to rank d first, then e, then c,
then, without loss of generaltiy, a, then b. The final scores are then a: 11; b: 10; c:
10; d: 11; e: 8: the existence of a constructive manipulation for d here depends on
the tie-breaking priority order (there exists a constructive manipulation for d if and
only if d has a higher priority than a or than b). On the other hand, there exists no
constructive manipulation for e. The greedy algorithm we have applied (rank first
the candidate that we want to be the winner, then the others by increasing order of
their current Borda score, possibly taking tie-breaking priority into account) gives
a successful manipulation if and only if there is one: the manipulation of the Borda
rule by a single voter is therefore polynomial.

What about the same problem for two voters or more? Consider a profile for
which the current Borda scores are a: 12; b: 10; c: 9; d: 9; e: 4; f : 1, with tie-breaking
priority a > b > c > d > e > f . Generalizing the previous greedy algorithm does
not work: suppose that the last two voters want e to win; after they rank it first, e has
14 points, and after they both rank f second, f has 9 points. They can continue with
ranking d third for one of them and fifth for the other one (d then has 13 points).
Then there are two ways of going further, depending on whether c is ranked once
third and once fifth, or twice fourth; one can check that in the first case, is will not
be possible to make e win, but that in the second case it will. This example suggests
that computing a manipulation of the Borda rule by two voters or more is hard; its
NP-hardness was long conjectured, and was proven independently by Betzler et al
(2011) and Davies et al (2011).

Such complexity studies were done for numerous voting rules, in several contexts
(constructive or destructive manipulation, by a single voter or a coalition of voters,
by weighted or unweighted voters, with a retsriction to single-peakedness profiles
oir not, etc.). We refer to Conitzer and Walsh (2016) for detailed results.

Some other works have also considered the issue of the average complexity of
manipulation, starting from the constatation that an NP-hardness result talks about
the worst case and does not guarantee that computing a manipulation will be usually
hard. The results in this direction tend to show that there does not exist any rule that
is often enough hard to manipulate (Procaccia and Rosenschein, 2007).
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Beyond manipulation by coalitions of voters, there exists other types of strategic
behaviour, such as “procedural control”: some voting rules can be strategically con-
trolled by the central authority (‘chair’) in charge of the election. The first article
on this topic (Bartholdi et al, 1992) defines several types of control: by addition,
suppression or partitioning of candidates or voters. For example, for control by ad-
dition of candidates, the chair can add a certain number of candidates in the hope of
diluting the support to the candidates that can beat her favorite candidate. For each
type of control and each voting rule F , three possibilities exist:

• F is insensitive to control: the chair can never act so as to change the winner.
• F is resistent to control: F is not insensitive to control but the control problem is

computationally hard.
• F is vulnerable to control: F is not insensible to control and the control problem

is computationally easy.

For example, the plurality rule is computationally resistant to control by addition or
suppression of candidates, but computationally vulnerable to control by suppression
of voters (Bartholdi et al, 1992).

Oher types of strategic behaviour, related to control, have been considered more
recently, such as bribery, control of sequential voting on a combinatorial domain or
manipulation by cloning candidates.

For a synthesis on computational barriers to strategic behaviour, see the work by
Conitzer and Walsh (2016) for manipulation and by Faliszewski and Rothe (2016)
for control and bribery.

2.5 Incomplete Knowledge and Communication

We consider here questions such as: given an incomplete description of the votes, is
the outcome already determined? If not, what are the candidates who can still win
and what are the relevant pieces of information to ask to the voters? How can we
do that in order to minimize the amount of communication exchanged between the
voters and the central authority?

For example, let us consider the following partial profile, with 4 candidates and
9 votes, out of which only 8 have been expressed:

4 voters: c� d � a� b
2 voters: a� b� d � c
2 voters: b� a� c� d
1 voter: ?�?�?�?
If the voting rule is plurality, then it is not difficult to see that the outcome is

already determined independently of the last vote (the winner is c), while for Borda,
the partial scores (computed from the 8 votes expressed) are a: 14; b: 10 ; c: 14; d:
10; thus, only a and c can win, and in order to determine the winner one needs only
to know whether the last voter prefers a to c or vice versa. This problem is known
under the name vote elicitation (Conitzer and Sandholm, 2002b; Walsh, 2008).
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More generally, in order to model situations where the central authority has an
incomplete knowledge of the voters’ preferences, one considers that each voter has
expressed a partial order over candidates, and a partial profile is a n-uple of partial
orders P = 〈P1, . . . ,Pn〉. A completion of P is a (complete) profile T = 〈T1, . . . ,Tn〉,
where each Ti is a linear order extending Pi. Then one defines the possible and
necessary winners (Konczak and Lang, 2005) with respect to a voting rule and a
partial profile:

• c is a possible winner if c is a winner for some completion of P.
• c is a necessary winner if c is a winner for each completion of P.

Thus, in the above example, c is a necessary winner for plurality; for Borda, the
possible winners are a and c, and there is no necessary winner.

The computation of possible and necessary winners has received a significant
attention, starting by Xia and Conitzer (2008). There also exists a probabilistic
version, where one counts the extensions where a candidate wins (Bachrach et al,
2010).

Several classes of situations deserve a special attention:

1. possible and necessary winners for the addition of voters: some voters have ex-
pressed their votes entirely, whereas the others have not expressed anything: the
partial profile is P = 〈P1, . . . ,Pn−k〉, where Pi is a linear order on X . This class
of situations corresponds, with a different interpretation, to a coalitional manip-
ulation problem: more precisely, let us consider the coalition A composed of the
last k voters. Then x is a possible winner if the coalition A can make x win (or
equivalently, A has a constructive manipulation for x), whereas x is a possible
winner if A cannot prevent x from winning (or equivalently, A has no destructive
manipulation against x).

2. possible and necessary winners for the addition of candidates: the voters have
expressed their preferences on a fixed subset of candidates, and nothing on the
other candidates: the partial profile is P = 〈P1, . . . ,Pn〉, where Pi is a linear order
on {x1, . . . ,xm−k} ⊆X . This class of situations occurs when new candidates de-
clare in the curse of the process: one can for instance think of a Doodle poll for
finding the date of a meeting, where voters have expressed their preferences on a
first set of time slots, and when new time slots that were previously not consid-
ered can become possible after this first vote; or else, consider a hiring committee
where a preliminary vote occurs between the candidates already interviewed and
a new candidate is declared admissible (Chevaleyre et al, 2010). As an example,
consider 12 voters, an initial set of candidates X = {a,b,c} and a new candidate
y. If the voting rule is plurality with tie-breaking priority order a > b > c > y,
the partial profile is such that the plurality scores before y is taken into account
are a : 5, b : 4, c : 3. On can check that a and b are possible winners, but not c.
For instance, for b, it is enough that 2 of the voters who ranked a first now rank
y first: the new plurality scores are a : 3, b : 4, c : 3, y : 2, and the winner is b.

3. truncated ballots: every voter has expressed a partial ranking consisting of her
top k candidates.
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4. incomplete lists: every voter i has expressed a ranking of an arbitrary subset Si ⊆
X of alternatives (the candidates in X \Xi being incomparable with those in Si,
and incomparable with each other). This class of situations occurs when voters
have an informed opinion on a subset of alternatives only: for instance, on a web
application for evaluating restaurants, a voter can evaluate only those she has
tried.

A problem closely related to the search of possible winners for the addition of
candidates is that of manipulation by candidate cloning (Elkind et al, 2010); the
difference is that for candidate cloning, although we don’t know how the clones of
a candidate will be ranked by a voter in the profile after cloning, still, we know that
they will be ranked contiguously in each vote.

Another topic is the design of communication protocols for voting rules. The
definition of a voting rule does not say anything on the way the winner will be
determined by the central authority. On the other hand, a communication protocol
for a voting rule specifies the pieces of information that each voter will communicate
in each round, in such a way that at the end of the protocol, the result will be known.
(More generally, a protocol can be seen as an algorithm where atomic instructions
are replaced by communication actions between agents, in such a way that an agent,
in a given round, communicates information based on her knowledge.) The cost of a
protocol is the total number of bits exchanged in the worst case. The (deterministic)
communication complexity of a voting rule F is the cost of the cheapest protocol for
F : it measures the minimal amount of information to be communicated so that the
result of the vote can be determined. The communication complexity of voting rules
is studied in detail by Conitzer and Sandholm (2005).

A trivial protocol for an arbitrary voting rule F is the following: each voter i
sends her vote Vi to the central autority (this requires n logm! bits), and then the
central authority sends back the name of the winner to all the voters (this requires
n logm bits). The communication complexity of a voting rule is thus in O(n logm!).
However, for some voting rules there exists cheaper protocols. This is obvious for
instance for plurality, since it suffices for each voter to send the name of their pre-
ferred candidate to the central authority: the communication complexity of plurality
is therefore at most in the order of n logm (it is in fact exactly of this order; the
proof of the lower bound is nontrivial (Conitzer and Sandholm, 2005)); but it is also
the case for many other voting rules, such as plurality with runoff (in the order of
n logm), STV (in the order of n(logm)2), etc.

Another related problem is the compilation of the votes of a subelectorate. In
a context where the votes do not come in a single round (consider for instance a
political election where the votes of the citizens living abroad come with a few days
delay, or to a Doodle pool where some persons are late in responding). In this case,
it makes sense to compile the votes expressed so far, using as little space as possible,
so as to “prepare the ground” for the time where the remaining votes are known. The
compilation complexity of a voting rule is the minimal size for compiling a profile.
It is identified, for some rules, by Chevaleyre et al (2009) and Xia and Conitzer
(2010).
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For more details about voting with incomplete preferences, communication pro-
tocols, vote compilation, as well as the learning of (some classes of) voting rules and
the robustness of voting rules, see the chapter by Boutilier and Rosenschein (2016).

2.6 Some Other Issues

For the sake of brevity, there are a number of other research topics at the meeting
point of voting and AI which we have not discussed in this section.

One which is especially relevant to this book is group planning. It is addressed
for the fist time by Ephrati and Rosenschein (1993): each agent has her own goal; at
each round, agents vote on the next action to perform without revealing their pref-
erences explicitly. More generally, collective combinatorial optimization deals with
the design of methods for the collective version of specific combinatorial optimiza-
tion problems, such as shortest path finding (Klamler and Pferschy, 2007), minimum
spanning tree (Darmann et al, 2009); egalitarian versions of some other combinato-
rial optimization problems are studied by Galand and Perny (2006); Escoffier et al
(2013).

A few other topics, such as: randomized voting, iterative voting, computer-
assisted theorem proving in social choice, approximate notions of single-peakedness,
the computational aspects of apportionment and districting, group classification,
group recommendation, social choice and crowdsourcing, and dynamic social choice,
are briefly reviewed in the chapter by Brandt et al (2016c, Section 4), and the first
four are reviewed in more detail by (Endriss, 2017). Lastly, new approaches to the
rationalization of voting rules, partly originating in AI research, are reviewed in the
chapter by Elkind and Slinko (2016).

3 Fair Allocation

Quand on partage le gâteau, l’important est : qui tient le couteau ?
(When the cake is divided, the main question is: who holds the knife?)

Bernard Maris, French economist, killed on January 7, 2015 in Paris

3.1 Fair Allocation Problems

Every CDM process is guided, explicitly or not, by the desirable properties that the
collective decision must satisfy. We have seen in the introduction the most promi-
nent of these properties: efficiency, which is often implemented by Pareto-efficiency.
Another property which is very often required is fairness. Indeed, the essence of
CDM is very often to look for admissible compromises between the agents antag-
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onistic interests and preferences, which is a possible definition of fairness. We will
later introduce several formal models of fairness.

The need for fairness is particularly strong in a kind of CDM problems called
fair allocation or fair division problems, which are the subject of this section. Here,
the alternatives are just allocations of goods (or resources) to agents. Even if the tra-
ditional CDM problem assumes that the agents have preferences over all the alter-
natives, it is commonly assumed that each agent only cares about what she receives
(her own share). In other words, an agent will be indifferent between two allocations
where she receives the same share.

Fair allocation problems can be divided into classes. The first one concerns di-
visible goods or resources, like money, time, water or land. For a long time this
class has been explored by economists, using continuous mathematics in microe-
conomics. The second one is about indivisible objects or resources, like works of
art, pieces of furniture, teaching time slots, cars or houses. Mixed problems exist, a
classical example being fair division problems with indivisible goods, but monetary
compensation (money is a special divisible good, others are indivisible).

The contribution of artificial intelligence to the field of fair allocation mainly con-
cerns fair allocation of indivisible goods without monetary compensation, which are
the most difficult from an algorithmic point of view, because of their strong com-
binatorial nature. Actually, consider the allocation of m objects to n agents (each
object must be allocated to one and only one agent), the number of possible alloca-
tions is nm: the size of the solution space increases exponentially with the size of the
problem instance. For similar reasons, artificial intelligence is involved also in fair
allocation of divisible and heterogeneous resources (cake-cutting), see Section 3.5.

3.2 Some Real World Fair Allocation Problems

Before going further and in order to emphasize their importance, we enumerate a
set of real world fair allocation problems.

1. frequency allocation to radio stations, land division, mining and natural resource
sharing (Antarctic, ocean floor, Moon), common exploitation of a scientific fa-
cility, such as Earth-observing satellites (Lemaı̂tre et al, 1999);

2. fair representation (apportionment) (Balinski and Young, 2001), setting up elec-
toral boundaries;

3. fair allocation of kidneys or other organs to transplant;
4. allocation of positions in public entities;
5. sharing operating costs of international organisations, assessment of taxes;
6. allocation of permits to discharge pollutants;
7. sharing water treatment facilities between localities;
8. dividing estates in inheritance or divorce;
9. sharing time slots in schools, hospitals, airports,...;

10. allocating tasks or offices to employees, rooms to students, articles to reviewers,
quotas of refugees to countries.



22 Sylvain Bouveret, Jérôme Lang, and Michel Lemaı̂tre

Notice that a lot of these problems concerns fair division of indivisible and non-
shareable goods without monetary compensations.

3.3 How to Define Fairness?

Even if fairness is sometimes defined using the prominent Aristotelian’s principle
“equal treatment of equals, unequal treatment of unequals”, there is no definitive and
universal definition of fairness, but a number of properties corresponding to differ-
ent formal definitions. None of these properties is universally considered to be the
right notion of fairness, but each one conveys a different aspect of fairness. Some
of these properties are defined on the collective preference (such as anonymity, sep-
arability, inequality reduction) while others apply to allocations (proportionality,
envy-freeness).

Even if there is no universal notion of fairness, two properties are commonly
required: unanimity and anonymity. Unanimity corresponds, in the context of fair
division, to the Pareto-efficiency property, already discussed in Section 1.

3.3.1 Anonymity

If equal agents should be treated equally, then the anonymity property should be
the first prerequisite. This properties conveys the fact that the collective preference
should not depend on the agents’ identities. Formally, for all permutation of agents
σ , then the collective preorder aggregation function G, must satisfy

G(�1,�2, . . .�n) = G(�σ(1),�σ(2), . . .�σ(n)).

3.3.2 The Tension Between Unanimity and Strict Equality

In this paragraph we adopt the utilitarian model, with a common scale of utilities:
for example, it is meaningful to say that a given allocation satisfies agent 1 more
than agent 2.

In general, unanimity and strict equality cannot be satisfied at the same time.
That is, there is in general no Pareto-efficient allocation giving to each agent the
same amount of individual utility, as the following abstract situation involving two
agents confronted to four possible allocations illustrates:

allocations u1 u2

a 4 4
b 3 6
c 7 5
d 2 11
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Allocation a is perfectly equitable, but is dominated by allocation c (c is better than
a for each agent). Hence a is ruled out, in spite of its perfect equity. How to choose
then between b, c and d? No one dominates another. Egalitarianism (maximizing
the min) selects c whereas classical utilitarianism chooses the sum-efficient but ob-
viously unfair d. From an equity point of view, we are inclined to select c as the
“optimal” allocation. But there are less obvious situations. Imagine having to choose
between two allocations associated to the following utility profiles: 〈1,49,50〉 and
〈2,2,96〉. Or what about the case 〈14,43,43〉 and 〈15,15,70〉?

3.3.3 The Priority Principle

Another principle is sometimes considered in situations where anonymity is not
completely relevant: the priority principle. Following this principle, an allocation
decision should be based on agents’ characteristics. For example, in the kidney al-
location problem, patients having waited longer than others could have priority, or
those having a longer life expectancy after transplant. Birthright is also a typical
example.

3.3.4 Independence of Unconcerned Agents (IUA)

This property, also called separability, applies to the collective preference. Accord-
ing to IUA, the collective preference should be such that an agent who is indifferent
between two allocations can be ignored when choosing between these two alloca-
tions (she is not concerned by the choice). In other words, if this property is not
satisfied, the collective preference between two allocations for which an agent is in-
different, depends on the precise individual utility of this agent for these allocations,
which is hardly acceptable.

Consider the following example (Moulin, 1988). There are three agents and the
collective utility aggregation function g is the median. Let a and b be two alloca-
tions with respective utility profiles 〈0,2,3〉 and 〈0,1,4〉. We have g(〈0,2,3〉) >
g(〈0,1,4〉) hence a �col b. Now, consider two other allocations a′ and b′, with re-
spective profiles 〈5,2,3〉 and 〈5,1,4〉 (utilities of agents 2 and 3 are not modified,
but utility of agent 1 is raised from 0 to 5. We have now g(〈5,2,3〉) < g(〈5,1,4〉),
that is b′ �col a′. The preference is reversed. Agent 1 is not concerned by the choice
between a and b, but her individual utility influences the choice between allocations
which does not change utilities of others! The collective preorder represented by the
median does not satisfies the IUA property.

This property is connected to the following important result. A collective pre-
order is continuous and satisfies the IUA property if and only if this preorder is
represented by an additive collective utility aggregation function g(−→u ) = ∑i f (ui)
where f is continuous and increasing.
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3.3.5 Inequality Reduction

This property supposes the utilitarian model with a common individual utility scale.
We have to define first what is called an inequality reducing transfer, or Pigou-

Dalton, transfer. Let−→u = 〈u1,u2, . . . ,un〉 be a utility profile, with u1 < u2. Consider
a utility transfer from agent 2 to agent 1 (from the richest to the poorest) such that
after this transfer, −→u becomes −→v with u1 + u2 = v1 + v2 and |v2− v1| < |u2− u1|.
Such transfer is said to reduce inequalities.

The inequality reduction property requires that any inequality reduction transfer
does not strictly decrease the collective utility. Formally, the preorder �col repre-
sented by the aggregation function g reduces inequalities when, for any pair of util-
ity profiles −→u and −→v equal except on their first and second components, such that
u1 < u2, |v2− v1|< |u2−u1| and u1 +u2 = v1 + v2, we have g(−→u )≤ g(−→v ).

Here is an example with three agents and g(〈u1,u2,u3〉) = u2
1 + u2

2 + u2
3. Let

a and b be two allocations respectively associated to the utility profiles 〈0,3,4〉
and 〈1,2,4〉. From a to b, inequalities are reduced, however g(〈0,3,4〉) = 25 >
g(〈1,2,4〉) = 21 which means that a is preferred to b. We conclude that the collec-
tive preference does not obey the inequality reduction property in this case.

An interesting fact is connected with this property and the separability (IUA)
property: the preorder�col represented by the additive aggregation function g(−→u )=

∑i f (ui) reduces inequalities if and only if f is a concave function. In the previous
example, f (x) = x2 is convex.

We now turn to properties which apply to allocations.

3.3.6 Proportionality (or Proportional Fair Share) and Max-min Fair Share

An allocation satisfies proportionality when each agent gets at least 1/n of the total
utility she would have received if she receives alone all objects (n is the number of
agents). This property was coined by Steinhaus in 1948 in the context of continuous
fair division (cake-cutting) problems.

Proportionality has been adapted to indivisible goods without monetary com-
pensation by Budish (2011), which defines the max-min fair share property. The
original definition is purely ordinal. In utilitarian terms, the max-min fair share of
an agent is the maximal utility that she can hope to get from an allocation if all the
other agents have the same preferences as her, when she always receive the worst
share (it is the best of the worst shares). An allocation satisfies the max-min fair
share property if each agent receives a utility no less than the utility of her max-min
fair share. Proportionality implies max-min fair share.
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3.3.7 Envy-freeness

This very general and intuitive property does not require interpersonal comparisons
of utility (just like proportionality). It both applies to the ordinal and cardinal (utili-
tarian) models.

An allocation is envy-free if no agent strictly prefers the share of another agent
to her own share. It is a kind of stability property. Formally, let ai/ j be an allocation
identical to a except that agent i gets the share that was the share of agent j in a. We
say that a is envy-free if a�i ai/ j for all agents i, j.

Envy-freeness and Pareto-efficiency are generally not compatible. Furthermore,
the problem of determining whether an allocation satisfying envy-freeness and
Pareto-efficiency exists is quite complex; even in most reasonable settings (see for
instance Bouveret and Lang, 2008).

Under additive preferences, envy-freeness implies proportionality. Other fairness
properties and their relations to each other are presented in the paper by Bouveret
and Lemaı̂tre (2016).

3.4 Main Aggregation Functions

In the utilitarian model, a family of aggregation functions is particularly interesting
in the context of fair division, namely the root-power quasi-arithmetic means family,
defined as follows (assuming strictly positive utilities):

gp(
−→u ) =

(
1
n ∑

i
up

i

)1/p

, p 6= 0 g0(
−→u ) =

(
∏

i
ui

)1/n

, for n = |−→u |

The family is parameterized by the real number p. Functions of this family are
additive11 and hence induced preorders obey the separability (IUA) property (see
page 23). When p= 1, g1 is the standard arithmetic mean, corresponding to classical
utilitarianism. The case p = 0 corresponds to the Nash function, which is indepen-
dent of individual scale of agents utilities, a particularly interesting property. The
collective preorder induced by g reduces inequalities if and only if p < 1. Finally,
when p tends to −∞, g tends toward the min function, and the induced preorder
tends toward the leximin preorder. 12

11 Strictly speaking, these function are not additive. However the preorders they induce can be
represented by additive functions, derived from original ones by increasing transformations. Even
g0 is additive in the broad sense of the term, because the additive function ∑i log(ui) represents the
same preorder.
12 The leximin preorder is a refinement of the preorder induced by the min function which satisfies
unanimity (Pareto-efficiency). The leximin preorder is precisely the one which at the same time
reduces inequalities and is independent of the common scale of utilities.
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Notice that this family creates a continuum between the extremes classical utili-
tarianism (sum) and egalitarianism (min).

Another family of interest is the family of ordered weighted averages (OWA)
(Yager, 1988), a variant of the weighted averages in which weights do not hold on
the components but on the ranks. A n-OWA is a family of aggregation functions
from Rn into R, taking −→w = 〈w1, . . . ,wn〉 ∈ [0,1]n as parameter, with ∑i wi = 1,
defined by O−→w (

−→a ) = ∑
n
i=1 wi · a?i , where 〈a?1,a?2, . . . ,a?n〉 is 〈a1,a2, . . . ,an〉 once

sorted weakly increasing. OWAs can express: the mean (wi = 1/n for all i); the
min (w1 = 1, and wi = 0 for all i > 1); the median (w(n+1)/2 = 1, and wi = 0 for
i 6= (n+ 1)/2); parameterizable compromises between min and mean, for example
wi = α i, 0 < α < 1 (with a suitable normalization); a function which tends towards
a representation of the leximin preorder (the previous one when α tends towards 0).

3.5 Procedural Allocation of a Divisible and Heterogeneous
Resource (Cake-Cutting)

The previous allocation model — choosing an allocation that maximizes an appro-
priate collective utility function — is based on two implicit assumptions. First, each
agent should completely and honestly report her preferences (under the form of a
utility function). Second, the agents rely on a central entity that is in charge of com-
puting the allocation. In some cases, the agents do not wish to publicly report their
preferences, and even if they accept to do so, nothing prevents them from acting
strategically and misreporting them. Finally, the agents can simply refuse to trust a
central authority. Hence the model based on the central optimization of a collective
utility function is not adapted to every situation.

There exist a very different kind of allocation procedures, that have been stud-
ied for years. These procedures are by essence distributed and output a fair and
efficient allocation from the preferences or a small fraction of them reported (hon-
estly if possible) by the agents. These procedures — often called mechanisms — are
particularly used in the context of the allocation of an infinitely divisible and hetero-
geneous good. The traditional metaphor is the cake-cutting situation: a rectangular
cake (formally modeled has the [0,1] real interval) is the common divisible and het-
erogeneous resource, and has to be shared among the n starving invitees, which all
have a particular utility function on this interval.13

The allocation procedures that are studied in this context are similar to games
in which the agents interact. The most prominent procedure in this context is the
well-known “I cut, you choose” game, that can be used to cut a cake between two
participants which can be roughly described as follows. One of the two participants
is the divider. The other one is the chooser. Provided that the cake can be divided in
all possible ways, that it is heterogeneous and that the participants can have different

13 Or at least an ordinal function on intervals: between two intervals, each agent must be able to
determine which of the two is better.
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tastes for different parts of the cake, cutting the cake in two equal parts is in general
not Pareto-optimal. The safest action for the divider is to cut the cake into two pieces
that are equal from her point of view. Then the chooser will take the best of the
two pieces. Under mild natural assumptions,14 it is easy to see that the resulting
allocation is Pareto-efficient, envy-free and proportional (satisfying the fair share
property). However, as we shall see later, the generalization of this protocol to three
agents or more is not straightforward.

The allocation problem of divisible and heterogeneous goods has a lot of real-
world applications, among which we can mention the time-sharing of a common
facility, or the land division problem.

A large number of works are dedicated to this problem, essentially in the field
of economics. The seminal books by Robertson and Webb (1998), Young (1994,
Chapters 8 and 9) and Brams and Taylor (1996) are good surveys of the topic.
The interested reader can also have a look at the more recent paper by Brams et al
(2006). Plenty of procedures are now well-known and well-studied, adapted to dif-
ferent contexts, and characterized by their fairness and efficiency properties. Some
impossibility theorems have also been described.

More recently, researchers in artificial intelligence have contributed to the field
of cake-cutting. They have mainly focused on the algorithmic complexity of the
proposed procedures. The analysis of the complexity bounds requires the introduc-
tion of precise models of interaction between the agents. From this point of view,
the researchers in AI also contribute: for instance, the classical model of interaction,
that has been proposed by Robertson and Webb (1998), has been recently extended
by a group of computer scientists (Brânzei et al, 2016). For interested readers, the
paper by Procaccia (2009) proposes an interesting survey of the complexity bounds
of cake-cutting procedures and the chapter by Procaccia (2016) gives an overview
on algorithmic aspects of cake-cutting.

To give an idea of the difficulty of the mathematical problems we have to deal in
this area and how computer scientists have contributed to the field, let us go back to
the aforementioned problem of finding a protocol to find an envy-free cake cutting
for three agents or more. In the early 60’s, Selfridge and Conway independently
came up with a protocol that returns an envy-free cake cutting in a bounded number
of steps for three agents (Brams and Taylor, 1996). A few decades later, Brams
and Taylor (1995) came up with a general envy-free protocol that works for any
number of agents. This protocol is guaranteed to terminate in finite time; however,
the number of queries needed can be unbounded, even for four agents. The problem
of finding a protocol that returns an envy-free allocation in a bounded number of
queries for any number of agents had been opened for decades until it was finally
solved by two computer scientists, Aziz and Mackenzie (2016). They came up with

an algorithm that finds an envy-free allocation in less than nnnnnn

queries, hence
closing what has been described by several researchers as one of the main challenges
in the field.

14 The agents are rational (they decide so as to maximize their satisfaction) and their utility is
additive in the ordinal sense: if A� B, C � D and A∩C = /0, then A∪C � B∪D.
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To finish this overview, we can mention some extension of the cake-cutting prob-
lem (called online cake-cutting) in the case where some participants arrive and de-
part when the allocation process is ongoing (Walsh, 2010).

3.6 Fair Division and Computer Science

As we have seen earlier, resource allocation problems have long been mainly studied
by economists, either from the normative or axiomatic point of view (as in the works
by Young (1994) and Moulin (2003) for instance) or from the procedural point of
view like in the works by Brams and Taylor (1996, 2000) about cake-cutting. How-
ever, like in voting, computer scientists and AI and OR researchers have started for a
couple of years to investigate the computational aspects of resource allocation prob-
lems: compact preference representation, algorithmic or complexity issues... The
vitality of the field is well illustrated by the chapters dedicated to fair division in the
survey books on computational social choice (Brandt et al, 2016b, Chapters 11, 12
and 13) (Rothe and Rothe, 2015, Chapters 7 and 8).

3.6.1 Compact Preference Representation

Even if a lot of work has been done in recent years on the topic of compact pref-
erence representation (see Chapter 7 of this volume dedicated to this topic), only a
small fraction of this work directly concerns resource allocation problems, with the
notable exception of combinatorial auctions (as we will see in Section 4). On the one
hand the domain of compact preference representation is quite young and resource
allocation problems only represent a small fraction of the individual or collective de-
cision making problems involving compact representation issues. On the other hand,
a lot of works dedicated to algorithmic or complexity issues of fair division problem
simply rule out these compact representation problems by assuming that the pref-
erences are additive: see for instance the paper by Lipton et al (2004) mainly ded-
icated to additive preferences, or the works by Bezáková and Dani (2005), Bansal
and Sviridenko (2006), Asadpour and Saberi (2007) on the Santa-Claus problem.

The first papers explicitly dedicated to compact preference representation in fair
division problems date back to the works by Chevaleyre et al (2004) on k-additive
functions and those by Bouveret et al (2005) and Bouveret and Lang (2008) mainly
concerning logic-based compact representation. We can also mention an adaptation
of the language of CP-nets for the compact preference representation in the con-
text of fair division problems, that was proposed by Bouveret et al (2009). It seems
however that not much work has been done since on compact representation in fair
division, and that AI researchers have focused on simpler settings like additive pref-
erences. One of the reasons might be that it is not so clear whether the benefit of
using an expressive compact representation language is worth the additional com-
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plexity cost and elicitation burden or not, and that the use of simple additive prefer-
ences might well be enough for most applications.

3.6.2 Complexity and Algorithmic Issues

At the beginning of computational social choice, most works especially dedicated
to algorithmic aspects of resource allocation are from the fields of combinatorial
auctions or operations research. In the latter domain, fair division problems have
been mostly considered from the point of view of “fair” multicriteria optimisation
problems, that is, optimisation problems where the criteria should be maximized
(or minimized) while being made as equal as possible. For instance, leximin, or
(inequality-reducing) OWA optimization problems belong to this kind of problems.
Among these works, to cite only two, Ogryczak (1997) applies fair optimization to
fair facility location problems, and Luss (1999) to fair division.

Several works have followed the earlier paper about algorithmic aspects of fair
division in different fields of research, both in artificial intelligence and operations
research. For instance, a very active stream of works has concerned algorithmic and
complexity aspects of a particular fair division problem, the Santa-Claus Problem.
This problem can be formulated as follows: Santa-Claus has to allocate a set of m
(indivisible, non shareable) toys to a set of n children. Each child has an additive
utility function on the set of toys. The allocation must be made so as to maximize
the utility of the least satisfied child. Of course, in spite of this special formulation,
this problem is nothing else than a fair division problem with indivisible goods,
additive preferences, and under the egalitarian criterion. Several papers (Bezáková
and Dani, 2005; Bansal and Sviridenko, 2006; Asadpour and Saberi, 2007, just to
name a few) have investigated the complexity and approximation algorithms of this
problem. They have also drawn a interesting parallel with scheduling problems that
have led to fruitful approximation approaches.

Still in the context of additive preferences, several works have also investigated
other fairness criteria. The seminal paper by Lipton et al (2004) is one of the first
works concerning the complexity and approximation of computing an allocation
minimizing the envy between agents.15 de Keijzer et al (2009) have extended the
latter paper by proving that the problem of determining whether an envy-free and
Pareto-efficient allocation was NP-complete. Later on, the case of ordinal separable
(i.e. additive) preferences has been investigated by Bouveret et al (2010), and fur-
ther by Aziz et al (2015) that have introduced interesting notions of envy-freeness
and Pareto-efficiency based on stochastic dominance. Concerning utility maximiza-
tion problems, Bouveret and Lemaı̂tre (2009) have focused on the computation of
leximin-optimal solutions using constraint programming approaches. Golden and
Perny (2010) and Lesca and Perny (2010) have also studied preference aggregation
in particular in the context of fair division problems, focusing on fairness criteria
like Lorenz optimality, maximization of an OWA or of a Choquet integral (exten-

15 This work introduces an interesting extension of the aforementioned envy-freeness criterion, by
proposing different measures of envy.
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sion of the OWA that can take into account positive or negative interactions between
agents).

Finally, several papers go beyond additive preferences and investigate theoreti-
cal complexity issues related to the use of compact preference representation lan-
guages in the context of fair division. For utility maximization problems, the paper
by Dunne (2005) was one of the first works investigating the complexity of fair di-
vision problems with preference representation based on Straight-Line Programs.
At the same time, Bouveret et al (2005) have focused on preference representation
based on propositional logic. All these results have been extended to other social
welfare functions, other languages like k-additive languages, and approximation is-
sues by Nguyen et al (2014). Finally, the complexity of finding envy-free allocations
with logic-based compact preference languages has been investigated by Bouveret
and Lang (2008).

3.6.3 Distributed Allocation and Communication Complexity

Even if distributed allocation and negotiation issues in fair division will mainly be
discussed in Chapter 20 of this volume, an overview of computer science aspects
of resource allocation would be incomplete without evoking this domain. In the ab-
sence of any central authority, the natural way of computing an “optimal” allocation
is to start from an initial allocation and then let the agents changing it using multilat-
eral negotiation. In this framework, the main desirable properties are related to the
convergence of the negotiation process, and the complexity is not defined in terms
of computation, but in terms of communication costs (number of steps, size of the
messages exchanged...).

The first theoretical results in this domain date back to Sandholm (1998). The
notion of communication complexity has been imported in fair division in partic-
ular by Endriss and Maudet (2005) and Dunne et al (2005), that mainly focus on
the number of swaps needed to reach an optimal allocation. We can also mention,
among other works on the subject, the paper by Chevaleyre et al (2007) that fo-
cuses on a relaxation of the envy-freeness criterion, for which the agents only have
a limited knowledge of the other agents. Finally, a paper by (Chevaleyre et al, 2017)
analyzes the fairness properties (like envy-freeness or proportionality) of the alloca-
tions obtained after the convergence of the negotiation process with several kinds of
deals, and also in the case where the set of possible swaps is constrained by a graph.

3.6.4 Recent Trends

We can observe an interesting recent trend in the community of computational fair
division. As already noticed in the section dedicated to compact preference rep-
resentation, a significant trend is to abandon complex theoretical frameworks and
look for simple models that are inspired by practical applications and can be used
in real situations. This has led to a stream of works trying to implement fair divi-
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sion in practice (see for instance the wonderful web application Spliddit16), or take
inspiration from practice to find better ways of defining fairness or motivating fair-
ness criteria. With simplicity in mind, most of these works are based on additive
preferences.

Among the works proposing some alternative approaches to fairness, Bouveret
and Lemaı̂tre (2016) introduce a scale of five fairness criteria of increasing strength.
This scale can be used as a measure of the level of conflict of the agents’ preferences:
the higher criterion it is possible to satisfy, the less conflicting the preferences are,
and the more likely it will be possible to find a satisfactory allocation. Among the
five criteria, the maximin share and the Competitive Equilibrium from Equal Income
(CEEI) criteria were already known in economics, but had been ignored so far by
computer scientists. This is no longer the case, and it had led to fruitful works on
theoretical properties, approximation and complexity, either about CEEI (Brânzei
et al, 2015; Aziz, 2015), or about the maximin share (Procaccia and Wang, 2014;
Amanatidis et al, 2015; Kurokawa et al, 2015). Caragiannis et al (2016b) have also
revisited a long-standing criterion, the seminal Nash social welfare function, and
shed a new light on its appealing fairness properties.

Finally, we can also mention an interesting work that perfectly characterizes the
fruitful collaboration between economics and computer science. Dickerson et al
(2014) analyze, both in practice and analytically, the probability of existence of an
envy-free allocation, depending on the ratio between the number of objects and the
number of agents: when this ratio is low, an envy-free allocation is very likely not to
exist, and the opposite when the ratio is high enough. Furthermore, the simulations
show a very interesting phase-transition phenomenon.

4 Combinatorial Auctions

4.1 From Classical to Combinatorial Auctions

Auctions is probably one of the most widely studied collective decision making
problem in the economical literature in the last fifty years. In its most general def-
inition, an auction is simply a structured mechanism in which some agents, the
bidders, compete for some objects to buy. The mechanism (which is in practice
implemented by a central entity, the auctioneer) is in charge of determining which
objects each agent will get at which price. A wide variety of mechanisms are studied
by economists and used in practice. Just to name a few, an auction can be open if
the participants publicly announce their bids, or sealed if the bidders only reveal this
information to the auctioneer and hide it from the other participants. An auction is
ascending if the bidders iteratively increase their bids until no agent is willing to pay
a higher price, and descending if the price proposed for an object decreases until at
least one bidder declares to be interested. In a first price auction, the winner should

16 http://www.spliddit.org/
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pay the price corresponding to the highest bid, whereas in a second price auction,
she should pay the second highest price.

The most common auctions types are the English auction (open first-price as-
cending) which is commonly used in artwork sales. The Dutch auction (open first-
price descending, in which the auctioneer progressively decreases the price pro-
posed for an object until a bidder accepts and pays this price) is traditionally used
for perishable products like tulips in the Netherlands. The Vickrey auction (sealed
second-price) is also called philatelic auction because it is used in the United States
for collection stamps sales. Finally, the sealed first-price auction is classically used
for the attribution of government contracts.

Auction theory has been studied for about 50 years mostly in economics — the
first theoretical work on auctions is generally attributed to Vickrey (1961) — but
computer scientists have recently paid an increasing attention to this field, mainly
with the study of combinatorial auctions.

The study of combinatorial auctions in computer science dates back to the work
of Rassenti et al (1982). The starting point of this work is that classical auctions
mechanisms, sequential by nature (that is, selling objects one by one) can be quite
inefficient and barely adapted to the situations where the bidders have non-modular
preferences on the objects; in other words, when they have are preferential depen-
dencies.

Let us consider a simple example where three objects are for sale: a vinyl disc
player (p) and two (indivisible) sets of vinyl discs: the first set contains records from
the Beatles (b) and the second one records from the Rolling Stones (s). Agent 1 is
very interested in having one of the two sets of records (no matter which of the
two), but does not own any disc player. Moreover, she is not interested in buying the
disc player alone, because she does not have any vinyl disc to listen to. She is for
instance ready to pay e100 for {p,b} or {p,s}, e110 for {p,b,s} but nothing for
individual objects. In other words, p and b are complementary, p and s are as well,
but s and b are substitutes. Agent 2 is also interested in the sets of records, but she
already owns a disc player. Let us say that she is thus ready to pay e30 for {b} or
for {s}, e10 for {p}, e40 for {p,b} or {p,s} and e70 for {p,b,s} (her preferences
are additive).

If the objects are sold sequentially, the first agent will probably have difficulties
to bid for them. Not knowing Agent 2’s preferences, she will probably not take the
risk of bidding for one of the two sets of records if she does not know for sure
whether she will get the disc player (and the other way around). Agent 2 will not
have the same difficulties: her preferences being additive, she can safely bid on each
of the three objects separately. Not only sequential allocation can have a negative
effect on bidding, but it can also harm the overall auction efficiency. For instance, in
the latter auction, if Agent 1 is risk-adverse and chooses not to bid at all, the three
objects will go to Agent 2 for a total price of e70 (provided that it is a first-price
auction). If all three objects had been allocated to Agent 1, the auctioneer would
have earned e110.
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An obvious solution to this problem is to sell bundles of objects instead of selling
them individually.17 However, it it not obvious how to do so, because the way the
bundles are formed should be related to the preferential dependencies of the agents.
In some cases it is reasonable to assume that these dependencies are the same (in
a shoe sale for instance, we can reasonably assume that the agents will only be
interested in pairs of shoes, not individual shoes), but it is not always the case. For
instance, in the latter auction, would it be more relevant to sell p and s together,
or b and s together? The only solution to this problem is to sell all the objects
simultaneously, and provide a way for the bidders to choose themselves the bundles
they want to bid for. This is the basic idea behind combinatorial auctions. It has
motivated the first works in this domain, concerning the allocation of take-off and
landing slots in airports (Rassenti et al, 1982). In this application, the notion of
preferential dependency is naturally present (what would an airline do with a take-
off slot without the corresponding landing slot?).

It is not a surprise that this extension of classical auctions has been mainly de-
veloped and studied in the field of computer science and artificial intelligence. A
lot of problems that arise in combinatorial auctions are well-known in computer
science. As we shall see, the combinatorial blow-up induced by the representation
of the allocation space calls for compact representation bidding languages. Further-
more, the problem of determining the optimal allocation is a lot more complex than
in traditional auctions and induces intricate algorithmic issues. Finally, even if we
will elude these aspects in the chapter, issues related to the design of truth-telling
auctions mechanisms and their resistance to manipulation is a crucial topic. They
are not only related to combinatorial auctions, but have a special formulation in this
context. All these topics are covered in details in the reference book by Cramton
et al (2006).

In what follows, we will denote by O the finite set of objects to be allocated to the
agents (the set of objects the agents bid for). Given a set of n agents N and a set of
objects O , an allocation −→π is a vector 〈π1, . . . ,πn〉, where for all i, πi ⊂ O denotes
the share received by agent i. In this section, we will only focus on allocations
satisfying the preemption constraint, that is, such that ∀i 6= j : πi∩π j = /0 (an object
cannot be allocated to two different agents).

4.2 Bidding Languages

As we have seen, the main difference between combinatorial and classical auctions
is the bidding set, which is namely the set of objects O for classical auctions and
the set of bundles 2O for combinatorial auctions. From the theoretical point of view,
changing the bidding set does not make a huge difference in the formal definition of

17 Other methods exist; see for instance simultaneous ascending auctions (Cramton, 2006).



34 Sylvain Bouveret, Jérôme Lang, and Michel Lemaı̂tre

the problem. However, in practice, the combinatorial dimension of the bidding set
induces crucial representation18 and computation issues.

The most prominent bidding languages used in combinatorial auctions are the
ones from the family of XOR / OR / OR? languages (Nisan, 2006; Fujishima et al,
1999; Sandholm, 2002).

Definition 1 (XOR / OR / OR? languages). Let O be a finite set of objects. An
atomic bid on O is a pair 〈S ,w〉 ∈ 2O ×R+. A set {〈S1,w1〉, . . . ,〈Sp,wp〉} of
atomic bids is said to be admissible if Si∩S j = /0 for all i 6= j in {1, . . . , p}.

A bid expressed in the XOR language is a finite set of atomic bids

〈S1,w1〉 XOR . . . XOR 〈Sp,wp〉.

The utility function associated to a bid M in the XOR language, mapping each
set of objects π (in other words each possible share) to the price the agent is ready
to pay for it, is defined as follows:

u : 2O → R+

π 7→ max
〈Si,wi〉∈M

Si⊆π

wi

A bid expressed in the OR language is a finite set of atomic bids

〈S1,w1〉 OR . . . OR 〈Sp,wp〉.

The utility function associated to a bid M in the OR language is:

u : 2O → R+

π 7→ max
M ′⊆M

M ′ admissible

∑
〈Si,wi〉∈M ′

Si⊆π

wi

A bid expressed in the OR?language is a bid expressed in the OR language in
which one or several dummy objects d 6∈ O can be present.

In the XOR language, an agent can cast a custom set of atomic bids. Each atomic
bid gives the price the agent is ready to pay for the corresponding bundle. Given a
set of objects the price an agent is ready to pay for it is the price of the best bundle
it contains.

The OR language works the same way, except that in this language, the prices
are interpreted additively.

By adding dummy objects to the bids in the OR? language the agents can make
several bids incompatible, as in the XOR language, even if they do not overlap
otherwise.

18 A simplistic representation of an agent’s utility function requires 2m−1 values, corresponding
to the number of non-empty subsets of O .
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Some authors (see for instance the work by Sandholm, 1999) have proposed to
combine the OR and XOR language to benefit from the expressivity of the XOR
language and the compactness of the OR language. Several languages have been
developed and used, among which we can mention the OR-of-XOR, XOR-of-OR
and OR / XOR languages.

Some other kinds of bidding language have also been developed, among others
logical ones. For instance, Boutilier and Hoos (2001) have proposed a language mix-
ing logic and numerical weights (representing utilities) associated to subformulas.
The main interest of such a language is to combine the approach based on objects
and the approach based on bundles, by proposing a way to logically combine the
weighted formulas (that can be seen as the atomic “bids” of this language).

4.3 The Winner Determination Problem

4.3.1 Formulation and Theoretical Complexity

The Winner Determination Problem (WDP for short) is the central problem in com-
binatorial auctions. The objective is to decide, among the set of bids, which ones
will be selected, coming down to determine which objects will be allocated to which
agents. The main allocation criterion used in combinatorial auctions is the utilitar-
ian criterion, that is, we look for the allocation that maximizes the revenue of the
auctioneer.

Definition 2 (Winner Determination Problem).

• Input : A set of agents N , a set of objects O , and a set of utility functions
(u1, . . . ,un) expressed as bids in a combinatorial auction language.

• Output : An allocation −→π of the objects that maximizes ∑
n
i=1 ui(πi).

Notice that this formulation of WDP implicitly assumes that the auctioneer can
freely dispose objects (in other words, the allocation can be incomplete), which is a
common assumption in combinatorial auctions.

The Winner Determination Problem has mainly been studied in the context of OR
or XOR bids, for which there is a natural formulation in 0–1 linear programming.
The idea is to create a variable xj

i ∈ {0,1} for each atomic bid 〈S j,w j〉 ∈Mi. xj
i = 1

if and only if this atomic bid is selected in the allocation.

max ∑i∈N ∑S j∈Mi w j×xj
i

s.t. xj
i ∈ {0,1}

∑i∈N ∑S j∈Mi
o∈S j

xj
i ≤ 1 for all o ∈ O (OR constraint)

or ∑S j∈Mi xj
i ≤ 1 for all i ∈N (XOR constraint)

We can notice that this formulation of the OR and XOR Winner Determination
Problem makes the problem strictly equivalent to the well-known knapsack prob-
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lem. It implies that the general decision version of the problem is NP-complete
(Rothkopf et al, 1998), but it also remains NP-complete even with very restrictive
assumption about the values and the kind of bids allowed, and also on the number
of agents (Lehmann et al, 2006).

4.3.2 Optimal Solving

In spite of the complexity of the WDP for OR, XOR languages and their variants,
quite large instances can be nevertheless efficiently solved by state-of-the-art linear
solvers running on the previous formulation of the WDP. However, the use of ad
hoc branching approaches (see for instance Chapter 1 of Volume 2) that are tailored
to this particular problem give even better results.

There are two natural ways of solving the WDP with a branching algorithm.
The first possibility is to branch on objects, that is, to choose an object at each
node of the search tree and to decide to which bid this object will be allocated. To
take into account the free disposal assumption, a classical approach is to create a
dummy bid containing all the objects and to which will be allocated all the disposed
items. This branching approach can be used in combination with several methods
that drastically reduce the size of the search space. For instance, some parts of the
search tree can be pruned by only allocating objects to bids that have not already
been considered in the previous branches. The second way of solving the WDP is
to branch on bids, that is, to choose at each node of the search tree an atomic bid
and decide whether it will be satisfied or not. Maintaining a conflict graph between
bids, that updates when the bids are selected or discarded, dramatically improves
the algorithm efficiency.

5 Conclusion

In this chapter, we have presented the foundations of (mainly) centralized collective
decision making.19

This domain, that has originally been mostly studied by political scientists and
economists, has recently met computer science and more specifically artificial in-
telligence. This very active scientific domain born from this convergence has been
called computational social choice. To illustrate the scientific activity in this do-
main, we have presented in this chapter three prominent centralized collective mak-
ing problems: voting, fair division and combinatorial auctions. For each of these
domains, we have presented the main works related to artificial intelligence.

19 The cake-cutting setting, that has also been introduced in this chapter, is an exception: the
resolution of this problem is based on interactions between agents, which is by definition not a
centralized process.
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Centralized collective decision making proceeds by directly aggregating the
agents preferences into a collective preferred decision that is not supposed to be
changed afterwards. A different approach to collective decision making is to let
the agents interact and negotiate: this is the case in distributed collective decision
making, presented in Chapter 20 of this volume, that will complement the overview
given in this chapter.
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