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Abstract
Production Rules or Business Rules are of the form if con-
dition then action. Sets of such rules can be executed on
input data according to execution algorithms, or analyzed
semantically using operational semantics, but the univer-
sality of systems or sets of such rules has never been char-
acterized formally, to the best of our knowledge.
Our goal is to show that for a simple execution algorithm,
sets of Business Rule form a universal programming lan-
guage. In other words, we show that Business Rules are
Turing-complete. The proof consists in showing that a
Business Rule program can be transformed in a WHILE
program using additional variables. The implications of
such a WHILE form include a type of structural opera-
tional semantics which may facilitate semantic analysis of
Business Rule Sets.
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1 Introduction
In recent years, academic research on Rule Systems has
mostly focused on knowledge representation and learning,
through Classification Rules for example. In contrast, we
look at Rule Systems as programs. In particular, Business
Rules (BR) (also called Production Rules in RuleML [1])
have a behavior much closer to standard imperative pro-
grams (flowcharts, WHILE programs) than any other type
of rules. They are notably used in decision automation
through Business Rules Management Systems (BRMS).
Where Induction Rules can be used to prove the internal
consistency of an ontology and deduce theorems from ax-
ioms, Business Rules behave more like WHILE programs,
when executed via an appropriate execution algorithm.
The rules we consider in this paper are BRs. BRs are writ-
ten using meta-variables stored in a different symbol ta-
ble than the input variables, which we will keep calling
variables. The meta-variable table matches variables ap-
pearing in a BR to variable names, and the variable table
matches the latter to stored values. Interpretation is in two

stages: first, the BR program is turned into a set of rule
instances, where the meta-variables are replaced by cor-
responding variables; then, rule instances are run by an
execution algorithm, which includes a conflict resolution
method to decide the order of rule instance execution. We
remark that BR is a typed language. Every meta-variable
and input variable must have a type, and arbitrary new
types can be defined within the BR program itself. The
matching from meta-variables to variables is typed: each
meta-variable has a type and can only match to a variable
of the same type. We only consider execution algorithms
which include a main loop.
BR programming can be seen as programming for non-
programmers, in the following sense. The two most dif-
ficult concepts for a layperson to understand are loops and
function calls. BR disposes of the former by automatically
executing programs over a loop construct, and of the latter
by resorting to meta-substitutions (meta-variables are re-
placed by variable names), so that a rule if condition then
action is automatically matched to many conditions and
actions sharing the same structure.
There are many variations of BR execution algorithms. Our
goal is not to characterize them or compare them. We use
a very simple algorithm consisting of the following steps:

1. Match variables to type-appropriate meta-variables in
rules to create all possible rule instances

2. Select the rule instances for which the condition is
true, using the current values of the variables

3. Execute the action of the first rule instance in the cur-
rent selection or stop if there is no such rule instance

4. Restart from step 1.

The order of rule instances used in step 3 is in our algo-
rithm defined by the lexicographic order derived from a
predefined order on the rules in the rule set to execute and
a predefined order on input variables. Such an algorithm
has a simplistic conflict resolution strategy: whenever more
than one rule instance could be executed, the one selected
is obtained from a fixed total order on rule instances. An



example of the execution of such an algorithm is described
in Fig. 1.

Figure 1: Example illustrating the execution algorithm

2 Turing-completeness
A Universal Turing Machine (UTM) is a Turing Machine
(TM) which can simulate any other TM on arbitrary input
[10, 11]. Let L be a programming language for the UTM
U , described for example by its grammar. By means of a
special program I called interpreter, programs written in
L can be executed on U [6].

Definition 1. If a programming language L can be used
to program a UTM via an interpreter, then L is Turing-
complete.

We can replace “UTM” in Defn. 1 by any universal com-
puter described in any Turing-complete language L′, since
interpreters can be composed. More precisely: (i) let U ′

be a program in L′ describing a UTM, and I ′ is the in-
terpreter from L′ to the UTM; (ii) let U be a program in
L describing I ′(U ′), and I be an interpreter from L to
L′. Then I (U) = I ′(U ′) is a UTM. Moreover, since
a UTM is defined as a TM which is able to simulate any
other TM, we can prove L Turing-complete by showing
that for any TM, L can be used to describe that TM via its
interpreter, as was done in [3]. According to the Church-
Turing thesis [2, 12, 4], any effectively calculable function
is Turing-computable. In other words, no device or pro-
gram can compute a function that a UTM cannot.

2.1 Business Rule programs
Regardless of the execution algorithm, a BR program con-
sists in a set of type declarations and a set of rules. A
type declaration consists of either the creation of a type
(create_new_type(type)) or the assignment of a type to
a variable (type(var) ← type), where var can be either
a variable or a meta-variable. A rule is defined as follows.
Given α the typed meta-variables and x the typed variables,
a rule is written:

if T (α, x) then
α← A(α, x)
x← B(α, x)

end if
where T is the condition and the couple (A,B) describes
the action. At least one of the variables, say x1 without
loss of generality, is selected to be the output of the BR
program.
The first part of a BR program interpreter is to compile the
rule instances derived from each rule. At compile time, α
is replaced by every type-feasible reordering of the x input
variable vector. For x ∈ Rn, the explicit set of rule in-
stances compiled from this rule is the type-feasible part of
the following code fragments, using (σj | j ∈ {1, ..., n!})
the permutations of {1, ..., n}:

if T ((xσ1(1), ..., xσ1(n)), x) then
(xσ1(1), ..., xσ1(n))← A((xσ1(1), ..., xσ1(n)), x)
(x1, ..., xn)← B((xσ1(1), ..., xσ1(n)), x)

end if
. . .
if T ((xσn(1), ..., xσn(n)), x) then

(xσn(1), ..., xσn(n))← A((xσn(1), ..., xσn(n)), x)
(x1, ..., xn)← B((xσn(1), ..., xσn(n)), x)

end if
The size of this set varies. The typing of the variables
and meta-variables matters, and depending on T , A and
B some of these operations might also be computationally
equivalent. The number of rule instances compiled from a
given rule can be 0 for an invalid rule (T (α, x) = false),
1 for a static rule (T (α, x) and B(α, x) do not vary with α,
A(α, x) = α), and up to n! for some rules if every variable
has the same typing.
An interpreter I for a BR program takes the Business
Rules and values of the variables as input, and executes
valid rule instances one at a time according to a conflict
resolution strategy (this ranges from simple to complex al-
gorithms) until it either executes a Stop instruction or runs
out of valid rule instances. It then returns the value of x1.
The most basic interpreter I0 uses the order given earlier
to choose which rule instance to execute, executing assign-
ment actions whenever conditions are True. In order to
show Turing-completeness, we only consider the basic in-
terpreter, meaning that we expect any more complicated
ones to be able to simulate the most basic.

2.2 WHILE programs
A WHILE program has the canonical (recursive) form:

while T0(x) do
ifblock1(T1,A1, x)
. . .
ifblockK(TK ,AK , x)

end while
where, for each k ≤ K, ifblockk(Tk,Ak, x) is defined ei-
ther as:



if T1
k(x) then
x← A1

k(x)
ifblock(Tk,Ak, x)

end if
or as an empty command. The interpretation of the sym-
bols Ti

k(x) and Ai
k(x) is: T are tensors of Boolean condi-

tions on the variables x, which evaluate to True or False,
and A is a tensor of functions of x yielding values to be
assigned to the variables.
In other words, a WHILE program is a single conditional
loop containing a sequence of embedded test conditions
followed by a conditional assignment action (note the ac-
tion could be empty by setting the corresponding A func-
tion to the identity).
It is well known that WHILE programs are Turing-
complete [5].

2.3 WHILE form of rule sets
A canonical WHILE program equivalent to a BR program
is easy to establish using the execution algorithm we
consider. Although this reduction plays no role in proving
Turing-completeness of BR programs, it is still interesting
to remark that BR programs can be written as WHILE
programs, and having a standardized WHILE form for BR
programs has some interesting applications. The main
idea is to introduce an additional integer variable x0 to
serve as a control variable, and to write each rule instance
explicitly in the WHILE program itself. This allows
for an easier adaptation to different interpreters, such as
those used in commercial BRMS. It must be noted that as
explained in 2.1, each rule corresponds to a sequence of
rule instances. The order of the instances in that sequence
is determined by our algorithm: it is the order described in
2.1. The formal definition is somewhat more complicated,
of course.

For a set of Business Rules R1, ..., Rm with conditions
T1, ..., Tm and actions (A1, B1), ..., (Am, Bm), a set
of typed variables x1, ..., xn, and a set of typed meta-
variables α1, ..., αn, the WHILE program equivalent to the
BR program with the above-mentioned execution mode is
written as below. It uses a single additional integer variable
x0, and we note (σj | j ∈ {1, ..., n!}) the permutations
of {1, ..., n}. The σj are ordered in lexicographic order on
σj(1, ..., n).

1: x0 ← −1
2: while x0 ̸= 0 do
3: if x0 = −1 then
4: x0 ← min {(i− 1)× n! + j
5: | Ti(xσj(1), ..., xσj(n)) = true}
6: else if x0 = (i− 1)× n! + j then
7: (xσj(1), ..., xσj(n))←
8: Ai((xσj(1), ..., xσj(n)), (x1, ..., xn))
9: (x1, ..., xn)←

10: Bi((xσj(1), ..., xσj(n)), (x1, ..., xn))

11: ◃ x0 is unique for each (i,j) couple
12: x0 ← −1
13: else
14: x0 ← 0
15: end if
16: end while
The use of the min() function and of the conditioned set is
not strictly speaking allowed in WHILE programs, and the
expression Ti(xσj(1), ..., xσj(n)) = true should be closer
to checking that the substitution αi ← xσj(i) is type ap-
propriate AND that the test is true. Even so, line 4 and
line 5 could easily be replaced by series of try...catch... and
if...then... instructions. For example, line 4 would be re-
placed by:

if type(α1) = type(xσ1(1)) ∧ · · · ∧
type(αn) = type(xσ1(n))∧
T1((xσ1(1), ..., xσ1(n)), (x1, ..., xn)) = true then

x0 ← 1
else if type(α1) = type(xσ2(1)) ∧ · · · ∧

type(αn) = type(xσ2(n))∧
T1((xσ2(1), ..., xσ2(n)), (x1, ..., xn)) = true then

. . .
else if type(α1) = type(xσn!(1)) ∧ · · · ∧

type(αn) = type(xσn!(n))∧
T1((xσn!(1), ..., xσn!(n)), (x1, ..., xn)) = true then

x0 ← n!
else if . . . then

. . .
else if type(α1) = type(xσn!(1)) ∧ · · · ∧

type(αn) = type(xσn!(n))∧
Tn((xσn!(1), ..., xσn!(n)), (x1, ..., xn)) = true then

x0 ← n× n!
end if

Figure 2: WHILE form of the rule set in Fig. 1

The Fig. 2 shows the WHILE form of the example in Fig. 1.

2.4 Equivalence
We now prove that the programming language defined us-
ing business rules and the simple looping algorithm chosen
is Turing-complete. This is based on creating a simulation
of WHILE programs using rules. In other words, after hav-
ing transformed a BR program in a WHILE program, we
now make sure that the converse is possible for any WHILE
program.



Theorem 2 (Equivalence with WHILE programs). The set
of programs computable using WHILE programs is the
same as the set of programs computable using Business
Rules.

We prove this by showing that a generic WHILE program
can be interpreted into a BR program. The only require-
ment of the interpretation is to be computable. We first
prove this for WHILE programs without embedded if state-
ments, then we discover a sequence of syntactical steps
on the symbols of a generic WHILE program which trans-
forms it into a WHILE program without embedded if state-
ments.

Lemma 3. Any WHILE program without embedded if
statement can be simulated using a BR program.

Proof. Given the following WHILE program without em-
bedded if statements:

1: while T0(x) do
2: if T1(x) then
3: x← A1(x)
4: end if
5: . . .
6: if TK(x) then
7: x← AK(x)
8: end if
9: end while

We can write an equivalent rule set with K + 1 rules.
They are static rules, because they do not make use of
meta-variables and thus produce only one rule instance
each:

if ¬T0(x1, ..., xn) then
Stop

end if
if T1(x1, ..., xn) then

x← A1(x)
end if
. . .
if TK(x1, ..., xn) then

x← AK(x)
end if

Using previous notations, rule R0 has T0(α, x) = ¬T0(x)
with Stop as action, while for k ∈ {1, ...,K} rule Rk has
Tk(α, x) = Tk(x), Ak(α, x) = α and Bk(α, x) = Ak(x).
This is obviously equivalent to the WHILE program
considered.

In the (admittedly rare) case where static rules are not
allowed, this is still possible using variable types. In
our case, using the same execution algorithm, we use n
meta-variables α1, ..., αn contained in a vector α to write
the following non-static BR program:

for all i ∈ {1, . . . , n} do
create_new_type(ti)

type(xi)← ti
type(αi)← ti

end for
if type(α1) = type(x1)∧ · · · ∧ type(αn) = type(xn)∧
¬T0(α1, ..., αn) then

Stop
end if
if type(α1) = type(x1)∧ · · · ∧ type(αn) = type(xn)∧
T1(α1, ..., αn) then

α← A1(α)
end if. . .
if type(α1) = type(x1)∧· · ·∧type(αK) = type(xK)∧
TK(α1, ..., αn) then

α← AK(α)
end if

Using previous notations, the typing conditions are part of
the definition of rule instances, and rule R0 has T0(α, x) =
¬T0(α) with Stop as action, while for k ∈ {1, ...,K}
rule Rk has Tk(α, x) = Tk(α), Ak(α, x) = Ak(α) and
Bk(α, x) = x. This is also equivalent to the WHILE pro-
gram considered, since the type declarations ensure that the
only viable rule instances will be the ones where α = x.

Lemma 4. Any WHILE program can be transformed into
an equivalent WHILE program without embedded if state-
ments.

Proof. We prove the lemma by reasoning on the ifblocks.
We consider the assertion: Any ifblock can be transformed
into a finite sequence of ifblocks without embedded if
statements.
We reason inductively on the depth of the deepest embed-
ded if statement. If it is 0 or 1, the property is trivial (one
is a pass instruction and the other already of the correct
form).
Let n ∈ N such that we can transform any ifblock of depth
n into a sequence of if statements. Let us consider an if-
block of depth n+ 1. It can be written as:

if T1(x) then
x← A1(x)
if T2(x) then

x← A2(x)
ifblock(T3,A3, x)

end if
end if

where ifblock(T3, A3, x) is an ifblock of depth n− 1. It is
equivalent to the following:

if T1(x) ∧ T2(x) then
x← A2(A1(x))
ifblock(T3,A3, x)

end if
if T1(x) ∧ ¬T2(x) then

x← A1(x)
end if

Which is a sequence of two ifblocks of depth n. As we can
tranform each of them into a sequence of ifblocks without



embedded if statements, we have the property for ifblocks
of depth n+ 1, and the induction is valid.
The property applied to each ifblocks of a WHILE pro-
gram transforms it into the form we wanted.

2.5 Turing-machine
While the above proof is sufficient to justify the Turing-
completeness of BRs, we can also use a much more direct
proof by exhibiting a rule set that simulates a universal Tur-
ing machine (UTM). Such a rule set is exhibited in Fig. 3.

Figure 3: Universal Turing Machine

This universal Turing machine has a straightforward input,
and terminates correctly for any valid Turing machine. We
have made simplifications for the sake of clarity: R1 should
clearly be at least three different rules each replacing act
with one of {"left", "right", "stay"}, and its complete for-
mally correct form would in fact have two more rules, to
be able to increase the length of the tape as needed (using
the variable sb as necessary).

3 Applications
3.1 WHILE form with other execution algo-

rithms
While we have used a very simple execution algorithm
where conflict resolution is based on a fixed ordering of
rules and variables, most BR execution algorithms are
more complex. Almost all of those can simulate the basic
algorithm (except in extreme cases, such as a conflict res-
olution strategy leading to a bounded number of execution
loops). As such, they are also Turing-complete. For all of
those, a WHILE form can be defined (although a canonical
one might not always seem obvious).

The most common conflict resolution strategies combine at
least the following three elements [9]:

• Refraction which prevents a rule instance from firing
(being selected by the conflict resolution algorithm)
again unless its condition clause has been reset.

• Priority which is a kind of partial order on rules, lead-
ing of course to a partial order on rule instances.

• Recency which orders rule instances in decreasing
order of continued validity duration (when rule in-
stances are created at run time, it is often expressed
as increasing order of rule instance creation time).

These elements do not forbid the conversion of a rule set
to a WHILE program. While the specifics depend on each
execution algorithm, the broad strokes are that:

• Refraction results in the use of an additional boolean
variable per rule instance in the WHILE program.

• Priority partially decides the order of the if-then-else
of the WHILE program.

• Recency is the most complicated. An easy
workaround would add an incremental integer vari-
able per rule instance in the WHILE program and use
a max() function in the tests of the if-then-else.

3.2 Structural Operational Semantics
Not all operational semantics for BR follow the structural
approach introduced by Plotkin [7] in that they use small-
step semantics. The standard semantics defined in W3C’s
Production Rule Dialect of the Rule Interchange Format
(RIF-PRD) [9] do, but are tailored to the syntax and al-
gorithm of the standard. Other attempts at creating opera-
tional semantics for BRs have focused on being compatible
with either declarative semantics or ontologies (or both)
[8, 13]. Such semantics keep the structure of the rule set
divided into rules, which helps with making sense of com-
plex rule sets and creating better user experiences.
At the price of losing the knowledge representation linked
to the use of rules, we can use the canonical WHILE form
to obtain a structural operational semantic interpretation
that is not unique to a syntax or execution algorithm, which
can allow for comparison of different BR programs. Fur-
thermore, using this semantics makes proving properties
of some rule programs easier, as the working memory will
not include lists of rules anymore. In a way, this semantics
is a tradeoff between data complexity (RIF-PRD has rule
instances in working memory) and number of small steps
taken (any semantics derived from a WHILE form will
go through many steps corresponding to inactive rule in-
stances). By keeping the conflict resolution separate from
the evaluation of condition clauses, the execution of the
rule set is algorithmically correct yet adds complexity to
the semantics that is unnecessary in most cases. The com-
parison of a flowchart representation of each semantic anal-
ysis for the example of Fig. 1 is made in Fig. 4 to make



the difference easier to visualize. We keep the steps in
both cases bigger than they could be, so that we do not
get bogged down in the evaluation of condition clauses for
example.

Figure 4: Representation of two semantic interpretations of
the example in Fig. 1

4 Conclusion
Business Rules seem simple enough, repeatedly treating
data according to a simple algorithm. The complexity of
BR programs actually comes from the interpreters. In par-
ticular, almost any interpreter that uses a looping algorithm
can make BR programs Turing-complete, as is the case
with the simplistic algorithm we have presented in this pa-
per. The proof of such is simple, yet it is a result that has
been overlooked so far (to the best of our knowledge). The
Turing-completeness of BR programs can have important
theoretical implications: it links the usual Rules research
on Inference Rules and ontologies with more traditional re-
search on programming languages and computability.
We have further provided a tool to study this link in detail
through the introduction of WHILE forms of BR programs.
WHILE programs are simple programming languages that
are easily linked to others, and can already provide some
insight on their own. Using structural operational semantic
analysis techniques on the transformed BR programs high-
lights a marked difference with the existing operational se-
mantics of Business Rules. These might inspire new tech-
niques for studying the properties of BR programs. The
use of WHILE forms also provides a way to compare BR
programs that use different interpreters without needing to
examine the details of either interpreter, as long as a canon-
ical WHILE form is agreed upon.
Both directions, bringing programming to Rules via
WHILE forms and bringing Rules to programming through
theoretical work, seem interesting enough to merit further
work.
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