

Fair Division under Ordinal Preferences: Computing Envy-Free Allocations of Indivisible Goods

Sylvain Bouveret Onera Toulouse Ulle Endriss University of Amsterdam Jérôme Lang Université Paris Dauphine

19th European Conference on Artificial Intelligence – Aug. 16-20, 2010

Introduction

The fair division problem

Given

- a set of indivisible objects $O = \{o_1, \ldots, o_m\}$
- and a set of agents $A = \{1, \ldots, n\}$
- such that each agent has some preferences on the subsets of objects she may receive

Find

- an allocation $\pi: A \to 2^{O}$
- such that $\pi(i) \cap \pi(j)$ for every $i \neq j$
- satisfying some fairness and efficiency criteria

Preferences

- cardinal: agent *i* has a utility function $u_i : 2^{O} \to \mathbb{R}$
- ordinal: agent i has a preference relation \succeq_i on 2⁰
- ordinal preferences are easier to elicit
- ordinality does not require preferences to be interpersonally comparable
- several important criteria need only ordinal preferences

Ordinal preferences

- \succeq weak order (transitive, reflexive and complete relation) on 2⁰
- $A \succeq B$: the agent likes A at least as much as B
- strict preference: $A \succ B \Rightarrow A \succeq B$ and not $B \succeq A$
- indifference: $A \sim B \Rightarrow A \succeq B$ and $B \succeq A$
- Preferences over sets of goods are typically *monotonic*: $A \supseteq B \Rightarrow A \succeq B$.

Ordinal preferences

- \succeq weak order (transitive, reflexive and complete relation) on 2⁰
- $A \succeq B$: the agent likes A at least as much as B
- strict preference: $A \succ B \Rightarrow A \succeq B$ and not $B \succeq A$
- indifference: $A \sim B \Rightarrow A \succeq B$ and $B \succeq A$
- Preferences over sets of goods are typically *monotonic*: $A \supseteq B \Rightarrow A \succeq B$.

Compact preference representation

- $O = \{o_1, \ldots, o_m\}$
- explicit representation of a preference relation on 2⁰:

needs exponential space

Compact preference representation

- $O = \{o_1, \ldots, o_m\}$
- explicit representation of a preference relation on 2⁰:

needs exponential space

Possible solutions:

- keep explicit representation but assume that the number of objects is low;
- restriction on the set of preferences an agent can express (examples: separable preference relations, additive utility functions);
- compact representation languages

Compact preference representation

- $O = \{o_1, \ldots, o_m\}$
- explicit representation of a preference relation on 2⁰:

needs exponential space

Possible solutions:

- keep explicit representation but assume that the number of objects is low;
- restriction on the set of preferences an agent can express (examples: separable preference relations, additive utility functions);
- 3 compact representation languages

Separable ordinal preferences

Restriction: an agent specifies a linear order \triangleright on *O* (single objects)

 $\mathcal{N}: a \rhd b \rhd c \rhd d$

Separable ordinal preferences

Restriction: an agent specifies a linear order \triangleright on O (single objects)

 $\mathcal{N}: a \rhd b \rhd c \rhd d$

How to lift \triangleright to a (partial) strict order $\succ_{\mathcal{N}}$ on 2⁰?

Separable ordinal preferences

Restriction: an agent specifies a linear order \triangleright on O (single objects)

 $\mathcal{N}: a \rhd b \rhd c \rhd d$

How to lift \triangleright to a (partial) strict order $\succ_{\mathcal{N}}$ on 2⁰?

Take the smallest strict order that

- extends \triangleright
- is (strictly) monotonic: if $X \supset Y$ then $X \succ Y$.
- is separable: if $(X \cup Y) \cap Z = \emptyset$ then $X \succ Y$ iff $X \cup Z \succ Y \cup Z$

Brams, S. J. and King, D. (2005). Efficient fair division—help the worst off or avoid envy? *Rationality and Society*, 17(4):387–421.

- $\mathcal{N}: a \rhd b \rhd c \rhd d$
- Separability
- Monotonicity

- $\mathcal{N}: a \rhd b \rhd c \rhd d$
- Separability
- Monotonicity

- $\mathcal{N}: a \rhd b \rhd c \rhd d$
- Separability
- Monotonicity

- $\mathcal{N}: a \rhd b \rhd c \rhd d$
- Separability
- Monotonicity

- $\mathcal{N}: a \rhd b \rhd c \rhd d$
- Separability
- Monotonicity

Dominance

An equivalent characterization

 $A \succ_{\mathcal{N}} B$ iff there exists an injective mapping $g : B \rightarrow A$ such that $g(a) \succeq_{\mathcal{N}} a$ for all $a \in B$ and $g(a) \succ_{\mathcal{N}} a$ for some $a \in B$.

Example: $\mathcal{N} = a \rhd b \rhd c \rhd d \rhd e \rhd f$

• { a , c , d }
$$\succ_{\mathcal{N}}$$
 { b , c , e }

- $\{a, d, e\}$ and $\{b, c, f\}$ are incomparable.
- $\{a, c, d\}$ and $\{b, c, e, f\}$ are incomparable.

Dominance

An equivalent characterization

 $A \succ_{\mathcal{N}} B$ *iff* there exists an injective mapping $g : B \rightarrow A$ such that $g(a) \succeq_{\mathcal{N}} a$ for all $a \in B$ and $g(a) \succ_{\mathcal{N}} a$ for some $a \in B$.

Example:
$$\mathcal{N} = a \triangleright b \triangleright c \triangleright d \triangleright e \triangleright f$$

•
$$\{ a , d , e \}$$
 and $\{ b , c , f \}$ are incomparable.

• $\{a, c, d\}$ and $\{b, c, e, f\}$ are incomparable.

Dominance

An equivalent characterization

 $A \succ_{\mathcal{N}} B$ iff there exists an injective mapping $g : B \rightarrow A$ such that $g(a) \succeq_{\mathcal{N}} a$ for all $a \in B$ and $g(a) \succ_{\mathcal{N}} a$ for some $a \in B$.

Example: $\mathcal{N} = a \rhd b \rhd c \rhd d \rhd e \rhd f$

• {
$$a, c, d$$
 } $\succ_{\mathcal{N}}$ { b, c, e }
• { a, d, e } and { b, c, f } are incomparable

• $\{a, c, d\}$ and $\{b, c, e, f\}$ are incomparable.

From individual preferences to collective resource allocation...

- Each agent has a linear order on O.
- We lift these orders to strict partial orders on 2⁰.
- We look for a fair and efficient allocation.

Fairness...

Fairness...

Classical envy-freeness

Given a profile $\langle \succ_1, \ldots, \succ_n \rangle$ of total strict orders, an allocation π is *envy-free* if for all $i, j, \pi(i) \succ_i \pi(j)$.

When $\langle \succ_1, \ldots, \succ_n \rangle$ are partial orders ?

Fairness...

Classical envy-freeness

Given a profile $\langle \succ_1, \ldots, \succ_n \rangle$ of total strict orders, an allocation π is *envy-free* if for all $i, j, \pi(i) \succ_i \pi(j)$.

When $\langle \succ_1, \ldots, \succ_n \rangle$ are partial orders ?

 \rightsquigarrow Envy-freeness becomes a modal notion

Possible and necessary Envy-freeness

- π is Possibly Envy-Free *iff* for all *i*, *j*, we have $\pi(j) \not\succ_i \pi(i)$;
- π is Necessary Envy-Free *iff* for all i, j, we have $\pi(i) \succ_i \pi(j)$.

- $\mathcal{N}_1 = a \rhd b \rhd c \rhd d$
- $\mathcal{N}_2 = d \rhd c \rhd b \rhd a$.

- $\mathcal{N}_1 = a \rhd b \rhd c \rhd d$
- $\mathcal{N}_2 = d \rhd \mathbf{c} \rhd \mathbf{b} \rhd \mathbf{a}$.
- $\pi: 1 \mapsto \{a, d\}; 2 \mapsto \{b, c\}.$

4 goods, 2 agents

- $\mathcal{N}_1 = a \rhd b \rhd c \rhd d$
- $\mathcal{N}_2 = d \rhd \mathbf{c} \rhd \mathbf{b} \rhd \mathbf{a}$.

•
$$\pi: 1 \mapsto \{a, d\}; 2 \mapsto \{b, c\}.$$

• $\{b, c\} \not\succ_1 \{a, d\}$ and $\{a, d\} \not\succ_2 \{b, c\}$, therefore π is PEF.

- $\mathcal{N}_1 = a \rhd b \rhd c \rhd d$
- $\mathcal{N}_2 = d \rhd \mathbf{c} \rhd \mathbf{b} \rhd \mathbf{a}$.

- $\mathcal{N}_1 = a \rhd b \rhd c \rhd d$
- $\mathcal{N}_2 = \mathbf{d} \rhd \mathbf{c} \rhd \mathbf{b} \rhd \mathbf{a}$.

- $\mathcal{N}_1 = a \rhd b \rhd c \rhd d$
- $\mathcal{N}_2 = \mathbf{d} \rhd \mathbf{c} \rhd \mathbf{b} \rhd \mathbf{a}.$

Pareto-efficiency

Efficiency...

Pareto-efficiency

Efficiency...

- Complete allocation.
- Pareto-efficiency

Pareto-efficiency

Efficiency...

Classical Pareto dominance

 π' dominates π if for all $i, \pi'(i) \succeq_i \pi(i)$ and for some $j, \pi'(j) \succ_j \pi(j)$

Possible and necessary Pareto dominance

- π' possibly dominates π iff for all $i, \pi(i) \not\succ_i \pi'(i)$ and for some j, we have $\pi(j) \not\succeq_j \pi'(j)$;
- π' necessarily dominates π *iff* for all $i, \pi'(i) \succeq_i \pi(i)$ and for some j, we have $\pi'(j) \succ_j \pi(j)$.
- π is *possibly Pareto-efficient* (PPE) if there exists no allocation π' such that π' necessarily dominates π .
- π' is *necessarily Pareto-efficient* (NPE) if there exists no allocation π' such that π' possibly dominates π .

Computing envy-free allocations

Envy-freeness and efficiency

complete PPE NPE - Efficiency

Fair Division under Ordinal Preferences: Computing Envy-Free Allocations of Indivisible Goods

Computing envy-free allocations

Envy-freeness and efficiency

Envy-freeness and efficiency

Fairness

Envy-freeness and efficiency cannot always be satisfied simultaneously

Fair Division under Ordinal Preferences: Computing Envy-Free Allocations of Indivisible Goods

Envy-freeness and efficiency cannot always be satisfied simultaneously

Questions:

- under which conditions is it guaranteed that there exists a allocation that satisfies Fairness and Efficiency ?
- how hard it is to determine whether such an allocation exists?

Complete possibly envy-free allocations

Complete possibly envy-free allocations

	complete	PPE	NPE
PEF	\mathbf{X}	Х	Х
NEF	X	Х	Х

Result

If *n* agents express their preferences over *m* goods and *k* distinct goods are top-ranked by some agent, then there exists a complete PEF allocation if and only if $m \ge 2n - k$.

Constructive proof (algorithm/protocol)

$$(k = 2; m = 6 \ge 2n - k)$$

Consider the agents in order 1 > 2 > 3 > 4:

- first step: give a to 1; give b to 3;
- second step: give d to 2; give c to 4;
- *third step*: give *e* to 4; give *f* to 2.

PPE-PEF allocations

completePPENPEPEFXXXNEFXXX

PPE-PEF allocations

complete PPE NPE PEF X X X NEF X X X

Result

There exists a PPE-PEF allocation if and only if there exists a complete, PEF allocation.

PPE-PEF allocations

	complete	PPE	NPE
PEF	Х	\mathbf{X}	Х
NEF	Х	X	Х

Result

There exists a PPE-PEF allocation if and only if there exists a complete, PEF allocation.

Key point of the proof: the previous protocol can be refined into a protocol returning an allocation that is the product of *sincere choices* by the agents in some sequence, and then use a result from [Brams and King, 2005].

Brams, S. J. and King, D. (2005). Efficient fair division—help the worst off or avoid envy? *Rationality and Society*, 17(4):387–421.

NPE-PEF allocations

Complexity of the existence of NPE-PEF allocations: open.

Complete NEF allocations

	complete	PPE	NPE
PEF	Х	Х	Х
NEF	X	Х	Х

Complete NEF allocations

	complete	PPE	NPE
PEF	Х	Х	Х
NEF	\mathbf{X}	Х	Х

Two necessary conditions:

- the number *m* of goods must be a multiple of the *n* number of agents.
- the top objects must be all distinct

Complete NEF allocations

	complete	PPE	NPE
PEF	Х	Х	Х
NEF	\mathbf{X}	Х	Х

Two necessary conditions:

- the number *m* of goods must be a multiple of the *n* number of agents.
- the top objects must be all distinct

Complete allocation

- deciding whether there exists a complete NEF allocation is NP-complete (even if m = 2n).
- the problem falls down in *P* for two agents

(hardness by reduction from [X3C])

Pareto-efficient-NEF allocations

	complete	PPE	NPE
PEF	Х	Х	Х
NEF	Х	\mathbf{x}	\mathbf{X}

Pareto-efficient-NEF allocations

	complete	PPE	NPE
PEF	Х	Х	Х
NEF	Х	\mathbf{X}	\mathbf{X}

Possible and necessary Pareto-efficiency

- existence of a PPE-NEF allocation: NP-complete
- existence of a NPE-NEF allocation: NP-hard but probably not in NP (Σ^p₂-completeness conjectured).

Complexity results

	complete	PPE	NPE
PEF	Р	Р	?
NEF	NP-complete	NP-complete (P for 2 agents)	NP-hard $(\Sigma_2^p$ -completeness conjectured)

Conclusion

Framework and results

Fair division with incomplete ordinal preferences:

- separable and monotone ordinal preferences;
- modal Pareto-efficiency and Envy-freeness.

Results: fair division (Efficient and Envy-Free allocation) not tractable (NP-hard) in general.

Conclusion

Future work

Beyond separable preferences ? CI-nets [Bouveret et al., 2009]. \sim Even dominance is PSPACE-complete.

Solutions ?

- \Rightarrow other fairness criteria (than envy-freeness);
- \Rightarrow other tractable fragments (than SCI-nets);
- \Rightarrow approximate dominance relation.

Bouveret, S., Endriss, U., and Lang, J. (2009).

Conditional importance networks: A graphical language for representing ordinal, monotonic preferences over sets of goods. In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAF09), pages 67–72, Pasadena, California.