Conditional Importance Networks:
A Graphical Language for Representing Ordinal, Monotonic Preferences over Sets of Goods

Sylvain Bouveret Ulle Endriss Jérôme Lang
Onera Toulouse University of Amsterdam Université Paris Dauphine

International Joint Conference on Artificial Intelligence, July 16, 2009
Preferences on combinatorial domains...

- Preferences on a set of alternatives \Leftrightarrow defining a (reflexive) binary relation.
- Combinatorial set of alternatives $(\mathcal{D}_1 \times \cdots \times \mathcal{D}_n)$:
 - explicit representation: exponential size ;
 - \Rightarrow compact representation language.
Introduction

Combinatorial domains

Configuration, voting, planning, resource allocation ...

A special case: Boolean combinatorial domains.

- Domains of values isomorphic to $\mathbb{B} = \{0, 1\}$.
- Well-suited for representing preferences on bundles of objects.
- Example: $\{o_1, o_2\} \succ \{o_3\}, \{o_3, o_4\} \succ \{o_3\}$.
- Preferences are very often (strictly) monotonic: $X \subsetneq Y \Rightarrow X \prec Y$.
Outline of the talk

1. From (T)CP-nets to CI-nets
 - CP-nets
 - TCP-nets

2. Conditional Importance Networks
 - CI-nets: language and semantics
 - Expressivity
 - Computational issues
 - CI-nets and resource allocation
From (T)CP-nets to CI-nets

CP-nets [Boutilier et al., 2004]

Example

\[x, y : z_1 > z_2 \rightarrow \text{“All other things being equal, if } X = x \text{ and } Y = y, \text{ then I prefer having } Z = z_1 \text{ than } Z = z_2”. \]

CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements.

From (T)CP-nets to CI-nets

CP-nets [Boutilier et al., 2004]

Example

\[x, y : z_1 \succ z_2 \rightarrow \text{"All other things being equal, if } X = x \text{ and } Y = y, \text{ then I prefer having } Z = z_1 \text{ than } Z = z_2.\]

- CP-nets: \(a : b \succ \overline{b}; \)
- whereas we want: \(a : b \succ c. \)

CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements.
From (T)CP-nets to CI-nets

TCP-nets [Brafman et al., 2006]

- CP-nets enriched with (conditional) importance statements.
- **TCP-nets**: $a : b \triangleright c$

Brafman, R. I., Domshlak, C., and Shimony, S. E. (2006).

On graphical modeling of preference and importance.

TCP-nets [Brafman et al., 2006]

- CP-nets enriched with (conditional) importance statements.
- TCP-nets: $a : b \triangleright c$
- ...but we also want: $a : bc \triangleright de$.

Conditional importance statement

Conditional importance statement: \(S^+, S^- : S_1 \triangleright S_2 \) (with \(S^+, S^- \), \(S_1 \) and \(S_2 \) pairwise-disjoint).

Example: \(\overline{ad} : b \triangleright ce \) implies for example \(ab \succ ace, abfg \succ acefg, \ldots \)

Cl-net

A Cl-net on \(\mathcal{V} \) is a set \(\mathcal{N} \) of conditional importance statements on \(\mathcal{V} \).
Semantics

A CI-net of 4 objects \(\{a, b, c, d\} \): \(a : d \succ bc, \overline{ad} : b \succ c, d : c \succ b \)
A CI-net of 4 objects \(\{a, b, c, d\} \): \(\{a : d \triangleright bc, a\overline{d} : b \triangleright c, d : c \triangleright b\} \)

Induced preference relation \(\succ_N \): the smallest preference monotonic relation compatible with all CI-statements.
Worsening flips

Worsening flip

\(\mathcal{V}_1 \sim \sim \mathcal{V}_2 \) is called a **worsening flip** wrt. \(\mathcal{N} \) if:
- either \(\mathcal{V}_1 \subseteq \mathcal{V}_2 \) (monotonicity flip);
- or they match a CI-statement in \(\mathcal{N} \) (CI-flip).

Proposition (dominance)

We have \(A \succ \succ \succ \mathcal{N} B \) if and only if there exists a sequence of worsening flips from \(A \) to \(B \) wrt. \(\mathcal{N} \).

Proposition (satisfiability)

A CI-net \(\mathcal{N} \) is satisfiable if and only if it does not possess any cycle of worsening flips.
Conditional Importance Networks

Expressivity

Proposition
CI-nets can express all strict monotonic preference relations on $2^\mathcal{V}$.

Proof sketch: for every (X, Y) such that $X \succ Y$ and $X \nsubseteq Y$, add the CI-statement $(X \cap Y), \overline{(X \cup Y)} : X \setminus Y \succ Y \setminus X$.

Proposition
Full expressivity is lost as soon as:
(i) we do not allow positive preconditions;
(ii) we do not allow negative preconditions;
(iii) the cardinality of compared sets is bounded by a fixed integer.
Input: A satisfiable CI-net \mathcal{N}, a bundle X.
Question: Is X non dominated for $\succ^{\mathcal{N}}$?

[Non-dominated]
Conditional Importance Networks

Optimization

[NON-DOMINATED]

Input: A satisfiable CI-net \mathcal{N}, a bundle X.

Question: Is X non dominated for $\succ_\mathcal{N}$?

Irrelevant: the entire set is the only one non dominated set!
Conditional Importance Networks

Optimization

Input: A satisfiable CI-net \mathcal{N}, a bundle X.

Question: Is X non dominated for $\succ_{\mathcal{N}}$?

Irrelevant: the entire set is the only one non dominated set!

More interesting:
- Constrained optimization
- Resource allocation
Input: A (satisfiable) CI-net \mathcal{N}, two bundles X and Y.
Question: $X \succ_{\mathcal{N}} Y$?
Conditional Importance Networks

Dominance

[DOMINANCE]
Input: A (satisfiable) CI-net \(\mathcal{N} \), two bundles \(X \) and \(Y \).
Question: \(X \succ_{\mathcal{N}} Y \)?

Some bad news...

Proposition
[DOMINANCE] in satisfiable CI-nets is \textbf{PSPACE}-complete, even under any of these restrictions:

1. every CI-statement bears on singletons and has no negative preconditions;
2. every CI-statement bears on singletons and has no positive preconditions;
3. every CI-statement is precondition-free.
Conditional Importance Networks

Dominance

Input: A (satisfiable) CI-net \(\mathcal{N}\), two bundles \(X\) and \(Y\).

Question: \(X \succ_{\mathcal{N}} Y\) ?

Some good news...

SCI-nets: precondition-free, singleton-comparing CI-statements.

Example: \(\{a \triangleright c, b \triangleright c, e \triangleright d\}\).

Proposition

[DOMINANCE] in satisfiable SCI-nets is in \(\mathbb{P}\).
Satisfiability

Input: A CI-net \mathcal{N}.
Question: Is \mathcal{N} satisfiable?
Conditional Importance Networks

Satisfiability

[SATISFIABILITY]

Input: A Cl-net \mathcal{N}.

Question: Is \mathcal{N} satisfiable?

Some bad news...

Proposition

[[SATISFIABILITY]] for Cl-nets is **PSPACE**-complete.
Satisfiability

Input: A Cl-net \mathcal{N}.

Question: Is \mathcal{N} satisfiable?

Some good news...

- **SATISFIABILITY** for SCI-nets is in \mathbf{P}.
- Two sufficient conditions for satisfiability: based on **acyclicity**.
Cl-nets and resource allocation

Cl-nets can be used to express fair division problems.

- **Objects**: \(V = \{a, b, c\} \).
- **Agents**:
 - \(N_1 = \{b : c \triangleright a, \bar{b} : a \triangleright c\} \);
 - \(N_2 = \{c \triangleright a, a \triangleright b\} \).
CI-nets and resource allocation

CI-nets can be used to express fair division problems.

- **Objects**: $\mathcal{V} = \{a, b, c\}$.
- **Agents**:
 - $\mathcal{N}_1 = \{b : c \succ a, \overline{b} : a \succ c\}$;
 - $\mathcal{N}_2 = \{c \succ a, a \succ b\}$

- $\langle 1 : a, 2 : bc \rangle$ is **not envy-free possible**.
- $\langle 1 : b, 2 : ac \rangle$ is **envy-free possible** but **not envy-free necessary**.
Conclusion

Summary and future work

- a new ordinal language based on conditional importance and on the Ceteris Paribus assumption;
- some satisfiability conditions;
- some investigations about expressivity of this language;
- some complexity results about this language.

Future work: We need to apply this to resource allocation and constrained optimization (some insights in the paper).

CI-nets: A Graphical Language for Representing Ordinal, Monotonic Preferences over Sets of Goods
Conclusion

Summary and future work

- A new ordinal language based on conditional importance and on the Ceteris Paribus assumption;
- Some satisfiability conditions;
- Some investigations about expressivity of this language;
- Some complexity results about this language.

Future work: We need to apply this to resource allocation and constrained optimization (some insights in the paper).