## Mon partage sera-t-il conflictuel ?

Une échelle de propriétés pour la caractérisation d'instances de partage de biens indivisibles

Sylvain Bouveret Michel Lemaître<br>LIG - Grenoble INP Formerly Onera Toulouse<br>7 èmes journées francophones Modèles Formels de l'Interaction<br>$1^{\text {er }}$ et 2 juillet 2013



Fair division of indivisible goods...

We have:

- a finite set of objects $\mathcal{O}=\{1, \ldots, m\}$
- a finite set of agents $\mathcal{A}=\{1, \ldots, n\}$ having some preferences on the set of objects they may receive

Fair division of indivisible goods...

We have:

- a finite set of objects $\mathcal{O}=\{1, \ldots, m\}$
- a finite set of agents $\mathcal{A}=\{1, \ldots, n\}$ having some preferences on the set of objects they may receive

We want:

- an allocation $\vec{\pi}: \mathcal{A} \rightarrow 2^{\mathcal{O}}$
- such that $\pi_{i} \cap \pi_{j}=\emptyset$ if $i \neq j$ (preemption),
- $\bigcup_{i \in \mathcal{A}} \pi_{i}=\mathcal{O}$ (no free-disposal),
- and which takes into account the agents' preferences

Fair division of indivisible goods...

We have:

- a finite set of objects $\mathcal{O}=\{1, \ldots, m\}$
- a finite set of agents $\mathcal{A}=\{1, \ldots, n\}$ having some preferences on the set of objects they may receive

We want:

- an allocation $\vec{\pi}: \mathcal{A} \rightarrow 2^{\mathcal{O}}$
- such that $\pi_{i} \cap \pi_{j}=\emptyset$ if $i \neq j$ (preemption),
- $\bigcup_{i \in \mathcal{A}} \pi_{i}=\mathcal{O}$ (no free-disposal),
- and which takes into account the agents' preferences

Plenty of real-world applications: course allocation, operation of Earth observing satellites, ...

A classical way to solve the problem:

- Ask each agent $i$ to give a score (weight, utility...) $w_{i}(o)$ to each object $o$
- Consider all the agents have additive preferences

$$
\rightarrow u_{i}(\pi)=\sum_{o \in \pi} w_{i}(o)
$$

- Find an allocation $\vec{\pi}$ that:

A classical way to solve the problem:

- Ask each agent $i$ to give a score (weight, utility...) $w_{i}(o)$ to each object $o$
- Consider all the agents have additive preferences

$$
\rightarrow u_{i}(\pi)=\sum_{o \in \pi} w_{i}(o)
$$

- Find an allocation $\vec{\pi}$ that:

1. maximizes the collective utility defined by a collective utility function, e.g. $u c(\vec{\pi})=\min _{i \in \mathcal{A}} u\left(\pi_{i}\right)$ - egalitarian solution
[Bansal and Sviridenko, 2006]
2. or satisfies a given fairness criterion,

$$
\text { e.g. } u_{i}\left(\pi_{i}\right) \geq u_{i}\left(\pi_{j}\right) \text { for all agents } i, j \text { - envy-freeness }
$$

[Lipton et al., 2004].

The Santa Claus problem.
In Proceedings of STOC'06. ACM.
$\square$
Lipton, R., Markakis, E., Mossel, E., and Saberi, A. (2004).
On approximately fair allocations of divisible goods.
In Proceedings of EC'04.

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$. Preferences:

|  | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| agent 1 | 5 | 4 | 2 |
| agent 2 | 4 | 1 | 6 |

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

|  | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| agent 1 | 5 | 4 | 2 |
| agent 2 | 4 | 1 | 6 |

Egalitarian evaluation:

$$
\vec{\pi}=\langle\{1\},\{2,3\}\rangle \rightarrow u c(\vec{\pi})=\min (5,6+1)=5
$$

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

|  | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| agent 1 | 5 | 4 | 2 |
| agent 2 | 4 | 1 | 6 |

Egalitarian evaluation:

$$
\begin{aligned}
& \vec{\pi}=\langle\{1\},\{2,3\}\rangle \rightarrow u c(\vec{\pi})=\min (5,6+1)=5 \\
& \vec{\pi}^{\prime}=\langle\{1,2\},\{3\}\rangle \rightarrow u c\left(\vec{\pi}^{\prime}\right)=\min (4+5,6)=6
\end{aligned}
$$

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

|  | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| agent 1 | 5 | 4 | 2 |
| agent 2 | 4 | 1 | 6 |

Egalitarian evaluation:

$$
\begin{aligned}
& \vec{\pi}=\langle\{1\},\{2,3\}\rangle \rightarrow u c(\vec{\pi})=\min (5,6+1)=5 \\
& \vec{\pi}^{\prime}=\langle\{1,2\},\{3\}\rangle \rightarrow u c\left(\vec{\pi}^{\prime}\right)=\min (4+5,6)=6
\end{aligned}
$$

Envy-freeness:
$\vec{\pi}$ is not envy-free (agent 1 envies agent 2 )

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

|  | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| agent 1 | 5 | 4 | 2 |
| agent 2 | 4 | 1 | 6 |

Egalitarian evaluation:

$$
\begin{aligned}
& \vec{\pi}=\langle\{1\},\{2,3\}\rangle \rightarrow u c(\vec{\pi})=\min (5,6+1)=5 \\
& \vec{\pi}^{\prime}=\langle\{1,2\},\{3\}\rangle \rightarrow u c\left(\vec{\pi}^{\prime}\right)=\min (4+5,6)=6
\end{aligned}
$$

Envy-freeness:
$\vec{\pi}$ is not envy-free (agent 1 envies agent 2) $\vec{\pi}^{\prime}$ is envy-free.

In this work, we consider the $2^{\text {nd }}$ approach: choose a fairness property, and find an allocation that satisfies it.

In this work, we consider the $2^{\text {nd }}$ approach: choose a fairness property, and find an allocation that satisfies it.

## Problems:

1. such an allocation does not always exist
$\rightarrow$ e.g. 2 agents, 1 object: no envy-free allocation exists
2. many such allocations can exist

In this work, we consider the $2^{\text {nd }}$ approach: choose a fairness property, and find an allocation that satisfies it.

## Problems:

1. such an allocation does not always exist
$\rightarrow$ e.g. 2 agents, 1 object: no envy-free allocation exists
2. many such allocations can exist

Idea: consider several fairness properties, and try to satisfy the most demanding one.
In this work we consider five such properties.

## The problem

Five fairness criteria

## Additional properties

## A glimpse beyond additive preferences

Envy-freeness
An allocation $\vec{\pi}$ is envy-free if no agent envies another one.

## Envy-freeness

An allocation $\vec{\pi}$ is envy-free if no agent envies another one.

## Known facts:

- An envy-free allocation may not exist.
- Deciding whether an allocation is envy-free is easy (quadratic time).
- Deciding whether an instance (agents, objects, preferences) has an envy-free allocation is hard - NP-complete [Lipton et al., 2004].

B
Lipton, R., Markakis, E., Mossel, E., and Saberi, A. (2004).
On approximately fair allocations of divisible goods.
In Proceedings of EC'04.

## Envy-freeness

An allocation $\vec{\pi}$ is envy-free if no agent envies another one.

## Known facts:

- An envy-free allocation may not exist.
- Deciding whether an allocation is envy-free is easy (quadratic time).
- Deciding whether an instance (agents, objects, preferences) has an envy-free allocation is hard - NP-complete [Lipton et al., 2004].

B
Lipton, R., Markakis, E., Mossel, E., and Saberi, A. (2004).
On approximately fair allocations of divisible goods.
In Proceedings of EC'04.


## Proportional fair share (PFS):

- Initially defined by Steinhaus [Steinhaus, 1948] for continuous fair division (cake-cutting)
- Idea: each agent is "entitled" to at least the $\mathrm{n}^{\text {th }}$ of the entire resource

E

```
Steinhaus, H. (1948).
The problem of fair division.
Econometrica, 16(1).
```


## Proportional fair share (PFS):

- Initially defined by Steinhaus [Steinhaus, 1948] for continuous fair division (cake-cutting)
- Idea: each agent is "entitled" to at least the $\mathrm{n}^{\text {th }}$ of the entire resource

$B$
Steinhaus, H. (1948).
The problem of fair division.
Econometrica, 16(1).

## Proportional fair share

The proportional fair share of an agent $i$ is equal to:

$$
u_{i}^{\mathrm{PFS}} \stackrel{\text { def }}{=} \frac{u_{i}(\mathcal{O})}{n}=\sum_{o \in \mathcal{O}} \frac{w_{i}(o)}{n}
$$

An allocation $\vec{\pi}$ satisfies (proportional) fair share if every agent gets at least her fair share.

## Easy or known facts:

- Deciding whether an allocation satisfies proportional fair share (PFS) is easy (linear time).
- For a given instance, there may be no allocation satisfying PFS
$\rightarrow$ e.g. 2 agents, 1 object
- This is not true for cake-cutting (divisible resource)
$\rightarrow$ Dubins-Spanier


## Easy or known facts:

- Deciding whether an allocation satisfies proportional fair share (PFS) is easy (linear time).
- For a given instance, there may be no allocation satisfying PFS
$\rightarrow$ e.g. 2 agents, 1 object
- This is not true for cake-cutting (divisible resource)
$\rightarrow$ Dubins-Spanier
New (?) facts:
- Deciding whether an instance has an allocation satisfying PFS is hard even for 2 agents - NP-complete [PARTition].
- $\vec{\pi}$ is envy-free $\Rightarrow \vec{\pi}$ satisfies PFS $^{1}$.
${ }^{1}$ Actually already noticed at least in an unpublished paper by Endriss, Maudet et al.


## Easy or known facts:

- Deciding whether an allocation satisfies proportional fair share (PFS) is easy (linear time).
- For a given instance, there may be no allocation satisfying PFS
$\rightarrow$ e.g. 2 agents, 1 object
- This is not true for cake-cutting (divisible resource)
$\rightarrow$ Dubins-Spanier
New (?) facts:
- Deciding whether an instance has an allocation satisfying PFS is hard even for 2 agents - NP-complete [PARTition].
- $\vec{\pi}$ is envy-free $\Rightarrow \vec{\pi}$ satisfies PFS $^{1}$.
${ }^{1}$ Actually already noticed at least in an unpublished paper by Endriss, Maudet et al.


PFS is nice, but sometimes too demanding for indivisible goods $\rightarrow$ e.g. 2 agents, 1 object

PFS is nice, but sometimes too demanding for indivisible goods $\rightarrow$ e.g. 2 agents, 1 object

## Max-min fair share (MFS):

- Introduced recently [Budish, 2011]; not so much studied so far.
- Idea: in the cake-cutting case, PFS $=$ the best share an agent can hopefully get for sure in a "I cut, you choose (I choose last)" game.
- Same game for indivisible goods $\rightarrow$ MFS.

E
Budish, E. (2011).
The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes.
Journal of Political Economy, 119(6).

PFS is nice, but sometimes too demanding for indivisible goods
$\rightarrow$ e.g. 2 agents, 1 object

## Max-min fair share (MFS):

- Introduced recently [Budish, 2011]; not so much studied so far.
- Idea: in the cake-cutting case, PFS = the best share an agent can hopefully get for sure in a "I cut, you choose (I choose last)" game.
- Same game for indivisible goods $\rightarrow$ MFS.

Budish, E. (2011).
The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes.

```
Journal of Political Economy, 119(6).
```


## Max-min fair share

The max-min fair share of an agent $i$ is equal to:

$$
u_{i}^{\mathrm{MFS}} \stackrel{\text { def }}{=} \max _{\vec{\pi}} \min _{j \in \mathcal{A}} u_{i}\left(\pi_{j}\right)
$$

An allocation $\vec{\pi}$ satisfies max-min fair share (MFS) if every agent gets at least her max-min fair share.

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

|  | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| agent 1 | 5 | 4 | 2 |
| agent 2 | 4 | 1 | 6 |

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

|  | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| agent 1 | 5 | 4 | 2 |
| agent 2 | 4 | 1 | 6 |
|  | $\rightarrow u_{1}^{\mathrm{MFS}}=5$ |  |  |
| $\rightarrow u_{2}^{\mathrm{MFS}}=5$ |  |  |  |

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

|  | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| agent 1 | 5 | 4 | 2 |
| agent 2 | 4 | 1 | 6 |$\rightarrow u_{1}^{\mathrm{MFS}}=5$

MFS evaluation:
$\vec{\pi}=\langle\{1\},\{2,3\}\rangle \rightarrow u_{1}\left(\pi_{1}\right)=5 \geq 5 ; u_{2}\left(\pi_{2}\right)=7 \geq 5 \Rightarrow$ MFS satisfied

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

|  | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| agent 1 | 5 | 4 | 2 |
| agent 2 | 4 | 1 | 6 |$\rightarrow u_{1}^{\mathrm{MFS}}=5$

MFS evaluation:
$\vec{\pi}=\langle\{1\},\{2,3\}\rangle \rightarrow u_{1}\left(\pi_{1}\right)=5 \geq 5 ; u_{2}\left(\pi_{2}\right)=7 \geq 5 \Rightarrow$ MFS satisfied
$\vec{\pi}^{\prime \prime}=\langle\{2,3\},\{1\}\rangle \rightarrow u_{1}\left(\pi_{1}^{\prime \prime}\right)=6 \geq 5 ; u_{2}\left(\pi_{2}^{\prime \prime}\right)=4<5 \Rightarrow$ MFS not satisfied

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

|  | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| agent 1 | 5 | 4 | 2 |
| agent 2 | 4 | 1 | 6 |$\rightarrow u_{1}^{\mathrm{MFS}}=5$

MFS evaluation:

$$
\begin{aligned}
& \vec{\pi}=\langle\{1\},\{2,3\}\rangle \rightarrow u_{1}\left(\pi_{1}\right)=5 \geq 5 ; u_{2}\left(\pi_{2}\right)=7 \geq 5 \Rightarrow \text { MFS satisfied } \\
& \vec{\pi}^{\prime \prime}=\langle\{2,3\},\{1\}\rangle \rightarrow u_{1}\left(\pi_{1}^{\prime \prime}\right)=6 \geq 5 ; u_{2}\left(\pi_{2}^{\prime \prime}\right)=4<5 \Rightarrow \text { MFS not satisfied }
\end{aligned}
$$

Example: 2 agents, 1 object.

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

|  | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| agent 1 | 5 | 4 | 2 |
| agent 2 | 4 | 1 | 6 |$\rightarrow u_{1}^{\mathrm{MFS}}=5$

MFS evaluation:
$\vec{\pi}=\langle\{1\},\{2,3\}\rangle \rightarrow u_{1}\left(\pi_{1}\right)=5 \geq 5 ; u_{2}\left(\pi_{2}\right)=7 \geq 5 \Rightarrow$ MFS satisfied
$\vec{\pi}^{\prime \prime}=\langle\{2,3\},\{1\}\rangle \rightarrow u_{1}\left(\pi_{1}^{\prime \prime}\right)=6 \geq 5 ; u_{2}\left(\pi_{2}^{\prime \prime}\right)=4<5 \Rightarrow$ MFS not satisfied

Example: 2 agents, 1 object.

$$
u_{1}^{\mathrm{MFS}}=u_{2}^{\mathrm{MFS}}=0 \rightarrow \text { every allocation satisfies MFS! }
$$

Not very satisfactory, but can we do much better?

## Facts:

- Computing $u_{i}^{\text {MFS }}$ for a given agent is hard $\rightarrow$ NP-complete [PARTITION]
- Hence, deciding whether an allocation satisfies MFS is also hard.
- $\vec{\pi}$ satisfies $\mathrm{PFS} \Rightarrow \vec{\pi}$ satisfies MFS.


## Facts:

- Computing $u_{i}^{\text {MFS }}$ for a given agent is hard $\rightarrow$ NP-complete [PARTITION]
- Hence, deciding whether an allocation satisfies MFS is also hard.
- $\vec{\pi}$ satisfies PFS $\Rightarrow \vec{\pi}$ satisfies MFS.


## Conjecture

For each instance there is at least one allocation satisfying max-min fair share.

## Facts:

- Computing $u_{i}^{\mathrm{MFS}}$ for a given agent is hard $\rightarrow$ NP-complete [PARTITION]
- Hence, deciding whether an allocation satisfies MFS is also hard.
- $\vec{\pi}$ satisfies PFS $\Rightarrow \vec{\pi}$ satisfies MFS.


## Conjecture

For each instance there is at least one allocation satisfying max-min fair share.

- Proved for special cases (2 agents, matching, scoring functions,... )
- No counterexample found on thousands of random instances.


## Facts:

- Computing $u_{i}^{\mathrm{MFS}}$ for a given agent is hard $\rightarrow$ NP-complete [PARTITION]
- Hence, deciding whether an allocation satisfies MFS is also hard.
- $\vec{\pi}$ satisfies PFS $\Rightarrow \vec{\pi}$ satisfies MFS.


## Conjecture

For each instance there is at least one allocation satisfying max-min fair share.

- Proved for special cases (2 agents, matching, scoring functions,... )
- No counterexample found on thousands of random instances.

- Max-min fair share: "I cut, you choose (I choose last)"
- Max-min fair share: "I cut, you choose (I choose last)"
- Idea: why not do the opposite ("Someone cuts, I choose first") ?
$\rightarrow$ Min-max fair share
- Max-min fair share: "I cut, you choose (I choose last)"
- Idea: why not do the opposite ("Someone cuts, I choose first") ?
$\rightarrow$ Min-max fair share


## Min-max fair share (mFS)

The min-max fair share of an agent $i$ is equal to:

$$
u_{i}^{\mathrm{mFS}} \stackrel{\text { def }}{=} \min _{\vec{\pi}} \max _{j \in \mathcal{A}} u_{i}\left(\pi_{j}\right)
$$

An allocation $\vec{\pi}$ satisfies min-max fair share (mFS) if every agent gets at least her min-max fair share.

- Max-min fair share: "I cut, you choose (I choose last)"
- Idea: why not do the opposite ("Someone cuts, I choose first") ?
$\rightarrow$ Min-max fair share


## Min-max fair share (mFS)

The min-max fair share of an agent $i$ is equal to:

$$
u_{i}^{\mathrm{mFS}} \stackrel{\text { def }}{=} \min _{\vec{\pi}} \max _{j \in \mathcal{A}} u_{i}\left(\pi_{j}\right)
$$

An allocation $\vec{\pi}$ satisfies min-max fair share (mFS) if every agent gets at least her min-max fair share.

- $\mathrm{mFS}=$ the worst share an agent can get in a "Someone cuts, I choose first" game.
- In the cake-cutting case, same as PFS.


## Facts:

- Computing $u_{i}^{\mathrm{mFS}}$ for a given agent is hard $\rightarrow$ coNP-complete [PARTITION]
- Hence, deciding whether an allocation satisfies mFS is also hard.
- $\vec{\pi}$ satisfies $\mathrm{mFS} \Rightarrow \vec{\pi}$ satisfies PFS.
- $\vec{\pi}$ is envy-free $\Rightarrow \vec{\pi}$ satisfies mFS .


## Facts:

- Computing $u_{i}^{\mathrm{mFS}}$ for a given agent is hard $\rightarrow$ coNP-complete [PARTITION]
- Hence, deciding whether an allocation satisfies mFS is also hard.
- $\vec{\pi}$ satisfies $\mathrm{mFS} \Rightarrow \vec{\pi}$ satisfies PFS.
- $\vec{\pi}$ is envy-free $\Rightarrow \vec{\pi}$ satisfies mFS .



## Competitive Equilibrium from Equal Incomes (CEEI)

- Set one price $p_{o} \leq £ 1$ for each object o.
- Give $£ 1$ to each agent $i$.
- Let $\pi_{i}^{\star}$ be (among) the best share(s) agent $i$ can buy with her $£ 1$.
- If $\left(\pi_{1}^{\star}, \ldots, \pi_{n}^{\star}\right)$ is a valid allocation, it forms, together with $\vec{p}$, a CEEI.

Allocation $\vec{\pi}$ satisfies CEEI if $\exists \vec{p}$ such that $(\vec{\pi}, \vec{p})$ is a CEEI.

## Competitive Equilibrium from Equal Incomes (CEEI)

- Set one price $p_{0} \leq £ 1$ for each object 0 .
- Give $£ 1$ to each agent $i$.
- Let $\pi_{i}^{\star}$ be (among) the best share(s) agent $i$ can buy with her $£ 1$.
- If $\left(\pi_{1}^{\star}, \ldots, \pi_{n}^{\star}\right)$ is a valid allocation, it forms, together with $\vec{p}$, a CEEI.

Allocation $\vec{\pi}$ satisfies CEEI if $\exists \vec{p}$ such that $(\vec{\pi}, \vec{p})$ is a CEEI.

- Classical notion in economics [Moulin, 1995]
- Not so much studied in computer science (except [Othman et al., 2010])

B
Moulin, H. (1995).
Cooperative Microeconomics, A Game-Theoretic Introduction.
Prentice Hall.

B
Othman, A., Sandholm, T., and Budish, E. (2010).
Finding approximate competitive equilibria: efficient and fair course allocation.
In Proceedings of AAMAS'10.

## Example: 4 objects $\{1,2,3,4\}, 2$ agents $\{1,2\}$.

Example: 4 objects $\{1,2,3,4\}$, 2 agents $\{1,2\}$.
Preferences:

|  | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| agent 1 | 7 | 2 | 6 | 10 |
| agent 2 | 7 | 6 | 8 | 4 |

Example: 4 objects $\{1,2,3,4\}$, 2 agents $\{1,2\}$.
Preferences:

|  | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| agent 1 | 7 | 2 | 6 | 10 |
| agent 2 | 7 | 6 | 8 | 4 |

Allocation $\langle\{1,4\},\{2,3\}\rangle$, with prices $\langle 0.8,0.2,0.8,0.2\rangle$ forms a CEEI.

Example: 4 objects $\{1,2,3,4\}$, 2 agents $\{1,2\}$.
Preferences:

|  | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| agent 1 | 7 | 2 | 6 | 10 |
| agent 2 | 7 | 6 | 8 | 4 |

Allocation $\langle\{1,4\},\{2,3\}\rangle$, with prices $\langle 0.8,0.2,0.8,0.2\rangle$ forms a CEEI.
Complexity supposedly hard, but still open.
Fact: $\vec{\pi}$ satisfies CEEI $\Rightarrow \vec{\pi}$ is envy-free.

Example: 4 objects $\{1,2,3,4\}, 2$ agents $\{1,2\}$.
Preferences:

|  | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| agent 1 | 7 | 2 | 6 | 10 |
| agent 2 | 7 | 6 | 8 | 4 |

Allocation $\langle\{1,4\},\{2,3\}\rangle$, with prices $\langle 0.8,0.2,0.8,0.2\rangle$ forms a CEEI.
Complexity supposedly hard, but still open.
Fact: $\vec{\pi}$ satisfies CEEI $\Rightarrow \vec{\pi}$ is envy-free.




1. For all allocation $\vec{\pi}$ :

$$
(\vec{\pi} \vDash \mathrm{CEEI}) \Rightarrow(\vec{\pi} \vDash \mathrm{EF}) \Rightarrow(\vec{\pi} \vDash \mathrm{mFS}) \Rightarrow(\vec{\pi} \vDash \mathrm{PFS}) \Rightarrow(\vec{\pi} \vDash \mathrm{MFS})
$$

$\rightarrow$ the highest property $\vec{\pi}$ satisfies, the most satisfactory it is.


1. For all allocation $\vec{\pi}$ :

$$
(\vec{\pi} \vDash \mathrm{CEEI}) \Rightarrow(\vec{\pi} \vDash \mathrm{EF}) \Rightarrow(\vec{\pi} \vDash \mathrm{mFS}) \Rightarrow(\vec{\pi} \vDash \mathrm{PFS}) \Rightarrow(\vec{\pi} \vDash \mathrm{MFS})
$$

$\rightarrow$ the highest property $\vec{\pi}$ satisfies, the most satisfactory it is.
2. If $\mathcal{I}_{\mid \mathcal{P}}$ is the set of instances s.t at least one allocation satisfies $\mathcal{P}$ :

$$
\mathcal{I}_{\mid \mathrm{CEEI}} \subset \mathcal{I}_{\mid \mathrm{EF}} \subset \mathcal{I}_{\mid \mathrm{mFS}} \subset \mathcal{I}_{\mid \mathrm{PFS}} \subset \mathcal{I}_{\mid \mathrm{MFS}}(=\mathcal{I} ?)
$$

$\rightarrow$ the lowest subset, the less "conflict-prone".


1. For all allocation $\vec{\pi}$ :

$$
(\vec{\pi} \vDash \mathrm{CEEI}) \Rightarrow(\vec{\pi} \vDash \mathrm{EF}) \Rightarrow(\vec{\pi} \vDash \mathrm{mFS}) \Rightarrow(\vec{\pi} \vDash \mathrm{PFS}) \Rightarrow(\vec{\pi} \vDash \mathrm{MFS})
$$

$\rightarrow$ the highest property $\vec{\pi}$ satisfies, the most satisfactory it is.
2. If $\mathcal{I}_{\mid \mathcal{P}}$ is the set of instances s.t at least one allocation satisfies $\mathcal{P}$ :

$$
\begin{aligned}
\mathcal{I}_{\mid \mathrm{CEEI}} \subset \mathcal{I}_{\mid \mathrm{EF}} & \subset \mathcal{I}_{\mid \mathrm{mFS}} \subset \mathcal{I}_{\mid \mathrm{PFS}} \subset \mathcal{I}_{\mid \mathrm{MFS}}(=\mathcal{I} ?) \\
& \rightarrow \text { the lowest subset, the less "conflict-prone". }
\end{aligned}
$$

## Two extreme examples:

- 2 agents, 1 object $\rightarrow$ only in $\mathcal{I}_{\mid \mathrm{MFS}}$
- 2 agents, 2 objects, with

|  | 1 | 2 |
| :---: | :---: | :---: |
| agent 1 | 1000 | 0 |
| agent 2 | 0 | 1000 |$\rightarrow$ in $\mathcal{I}_{\mid \text {CEEI }}($ with e.g. $\vec{p}=\langle 1,1\rangle)$.

## Additional properties

1. Strict inclusions

Are these inclusions strict?

$$
\mathcal{I}_{\mid \mathrm{CEEI}} \subset \mathcal{I}_{\mid \mathrm{EF}} \subset \mathcal{I}_{\mid \mathrm{mFS}} \subset \mathcal{I}_{\mid \mathrm{PFS}} \subset \mathcal{I}_{\mid \mathrm{MFS}}(=\mathcal{I} ?)
$$

## Additional properties

1. Strict inclusions $\quad \mathcal{I}_{\mid \mathrm{CEEI}} \subset \mathcal{I}_{\mid \mathrm{EFF}} \subset \mathcal{I}_{\mid \mathrm{mFS}} \subset \mathcal{I}_{\mid \mathrm{PFS}} \subset \mathcal{I}_{\mid \mathrm{MFS}}(=\mathcal{I}$ ?) Are these inclusions strict? Yes, they are, and we can prove it!
2. Strict inclusions $\quad \mathcal{I}_{\mid \mathrm{CEEI}} \subset \mathcal{I}_{\mid \mathrm{EFF}} \subset \mathcal{I}_{\mid \mathrm{mFS}} \subset \mathcal{I}_{\mid \mathrm{PFS}} \subset \mathcal{I}_{\mid \mathrm{MFS}}(=\mathcal{I}$ ? $)$ Are these inclusions strict? Yes, they are, and we can prove it!
3. Properties and egalitarianism?

- Envy-freeness: question studied in [Brams and King, 2005]
- Max-min fair share: egalitarian optimal allocations almost always satisfy max-min fair share.

1. Strict inclusions $\quad \mathcal{I}_{\mid \mathrm{CEEI}} \subset \mathcal{I}_{\mid \mathrm{EFF}} \subset \mathcal{I}_{\mid \mathrm{mFS}} \subset \mathcal{I}_{\mid \mathrm{PFS}} \subset \mathcal{I}_{\mid \mathrm{MFS}}(=\mathcal{I}$ ? $)$ Are these inclusions strict? Yes, they are, and we can prove it!
2. Properties and egalitarianism?

- Envy-freeness: question studied in [Brams and King, 2005]
- Max-min fair share: egalitarian optimal allocations almost always satisfy max-min fair share.

3. Interpersonal comparison

- Egalitarianism requires the preferences to be comparable:
- either expressed on a same scale (e.g. money)...
- ...or normalized (e.g. Kalai-Smorodinsky)
- The five fairness criteria introduced do not (independence of the individual utility scales).
$\rightarrow$ This is a very appealing property.

The problem

Five fairness criteria

Additional properties

A glimpse beyond additive preferences

Reminder: For additive preferences:
Conjecture
For each instance there is at least one allocation that satisfies max-min fair share.

Reminder: For additive preferences:

## Conjecture

For each instance there is at least one allocation that satisfies max-min fair share.

For $k$-additive preferences $(k \geq 2)$ this is obviously not true:
Example: 4 objects, 2 agents
4
3
$\times$
$\times$

1
2
$x \quad \times$

Reminder: For additive preferences:

## Conjecture

For each instance there is at least one allocation that satisfies max-min fair share.

For $k$-additive preferences $(k \geq 2)$ this is obviously not true:
Example: 4 objects, 2 agents


$$
\text { Agent 1: } w(\{1,2\})=w(\{3,4\})=1 \rightarrow u_{1}^{\mathrm{MFS}}=1
$$

Reminder: For additive preferences:

## Conjecture

For each instance there is at least one allocation that satisfies max-min fair share.

For $k$-additive preferences $(k \geq 2)$ this is obviously not true:
Example: 4 objects, 2 agents


$$
\begin{aligned}
& \text { Agent 1: } w(\{1,2\})=w(\{3,4\})=1 \rightarrow u_{1}^{\mathrm{MFS}}=1 \\
& \text { Agent 2: } w(\{1,4\})=w(\{2,3\})=1 \rightarrow u_{2}^{\mathrm{MFS}}=1
\end{aligned}
$$

Reminder: For additive preferences:

## Conjecture

For each instance there is at least one allocation that satisfies max-min fair share.

For $k$-additive preferences $(k \geq 2)$ this is obviously not true:
Example: 4 objects, 2 agents


$$
\begin{aligned}
& \text { Agent 1: } w(\{1,2\})=w(\{3,4\})=1 \rightarrow u_{1}^{\mathrm{MFS}}=1 \\
& \text { Agent 2: } w(\{1,4\})=w(\{2,3\})=1 \rightarrow u_{2}^{\mathrm{MFS}}=1
\end{aligned}
$$

Worse. . . Deciding whether there exists one is NP-complete [PARTITION].

> The problem

> Five fairness criteria

> Additional properties

> A glimpse beyond additive preferences

Conclusion

A scale of properties (for numerical additive preferences)...

A scale of properties (for numerical additive preferences)...
$\square$ Max-min fair share
Conjecture: always possible to satisfy it

A scale of properties (for numerical additive preferences)...


Proportional fair share
Cannot be satisfied e.g. in the 1 object, 2 agents case
Max-min fair share
Conjecture: always possible to satisfy it

A scale of properties (for numerical additive preferences)...


## Min-max fair share

Proportional fair share
Cannot be satisfied e.g. in the 1 object, 2 agents case
Max-min fair share
Conjecture: always possible to satisfy it

A scale of properties (for numerical additive preferences).


Envy-freeness<br>Requires somewhat complementary preferences<br>Min-max fair share<br>Proportional fair share<br>Cannot be satisfied e.g. in the 1 object, 2 agents case<br>Max-min fair share<br>Conjecture: always possible to satisfy it

A scale of properties (for numerical additive preferences).


Competitive Equilibrium from Equal Incomes
Requires complementary preferences
Envy-freeness
Requires somewhat complementary preferences

Min-max fair share
Proportional fair share
Cannot be satisfied e.g. in the 1 object, 2 agents case
Max-min fair share
Conjecture: always possible to satisfy it

A scale of properties (for numerical additive preferences)...


Competitive Equilibrium from Equal Incomes
Requires complementary preferences
Envy-freeness
Requires somewhat complementary preferences

Min-max fair share
Proportional fair share
Cannot be satisfied e.g. in the 1 object, 2 agents case
Max-min fair share
Conjecture: always possible to satisfy it

A possible approach to fairness in multiagent resource allocation problems:

1. Determine the highest satisfiable criterion.
2. Find an allocation that satisfies this criterion.
3. Explain to the upset agents that we cannot do much better.

- Close the conjecture and missing complexity results.
- Develop efficient algorithms (possibly in conjunction with approximation of fairness criteria)
- Experiments: Build a cartography of resource allocation problems.
- Extend the results to more expressive preference languages.
- Close the conjecture and missing complexity results.
- Develop efficient algorithms (possibly in conjunction with approximation of fairness criteria)
- Experiments: Build a cartography of resource allocation problems.
- Extend the results to more expressive preference languages.
- The five criteria do not require interpersonal comparison of utilities.
- Moreover: Four of them are purely ordinal (PFS is not)
- Do the results extend to (separable) ordinal preferences ?

