Mon partage sera-t-il conflictuel?

Une échelle de propriétés pour la caractérisation d'instances de partage de biens indivisibles

> bylvain Bouveret LIG – Grenoble INP

Michel Lemaître Formerly Onera Toulouse

 $7^{
m èmes}$ journées francophones Modèles Formels de l'Interaction $1^{
m er}$ et 2 juillet 2013

Fair division of indivisible goods

Fair division of indivisible goods...

We have:

- ▶ a finite set of **objects** $\mathcal{O} = \{1, \dots, m\}$
- ▶ a finite set of agents $A = \{1, ..., n\}$ having some preferences on the set of objects they may receive

Fair division of indivisible goods

Fair division of indivisible goods...

We have:

- ▶ a finite set of **objects** $\mathcal{O} = \{1, \dots, m\}$
- ▶ a finite set of agents $A = \{1, ..., n\}$ having some preferences on the set of objects they may receive

We want:

- ▶ an allocation $\overrightarrow{\pi}: \mathcal{A} \to 2^{\mathcal{O}}$
- ▶ such that $\pi_i \cap \pi_j = \emptyset$ if $i \neq j$ (preemption),
- and which takes into account the agents' preferences

Fair division of indivisible goods

Fair division of indivisible goods...

We have:

- ▶ a finite set of **objects** $\mathcal{O} = \{1, \dots, m\}$
- ▶ a finite set of agents $A = \{1, ..., n\}$ having some preferences on the set of objects they may receive

We want:

- ▶ an allocation $\overrightarrow{\pi}: \mathcal{A} \to 2^{\mathcal{O}}$
- ▶ such that $\pi_i \cap \pi_j = \emptyset$ if $i \neq j$ (preemption),
- ▶ and which takes into account the agents' preferences

Plenty of real-world applications: course allocation, operation of Earth observing satellites, ...

Centralized allocation

A classical way to solve the problem:

- Ask each agent i to give a score (weight, utility...) $w_i(o)$ to each object o
- ► Consider all the agents have additive preferences

$$\rightarrow u_i(\pi) = \sum_{o \in \pi} w_i(o)$$

Find an allocation $\overrightarrow{\pi}$ that:

A classical way to solve the problem:

- ▶ Ask each agent i to give a score (weight, utility...) $w_i(o)$ to each object o
- ► Consider all the agents have additive preferences

$$\rightarrow u_i(\pi) = \sum_{o \in \pi} w_i(o)$$

- Find an allocation $\overrightarrow{\pi}$ that:
- 1. maximizes the collective utility defined by a collective utility function, e.g. $uc(\overrightarrow{\pi}) = \min_{i \in \mathcal{A}} u(\pi_i)$ egalitarian solution [Bansal and Sviridenko, 2006]
- 2. or satisfies a given fairness criterion,

e.g.
$$u_i(\pi_i) \ge u_i(\pi_j)$$
 for all agents i, j – envy-freeness [Lipton et al., 2004].

- Bansal, N. and Sviridenko, M. (2006). The Santa Claus problem. In *Proceedings of STOC'06*. ACM.
 - Lipton, R., Markakis, E., Mossel, E., and Saberi, A. (2004). On approximately fair allocations of divisible goods. In *Proceedings of EC'04*.

	1	2	3
agent 1	5	4	2
agent 2	4	1	6

	1	2	3
agent 1	5	4	2
agent 2	4	1	6

Egalitarian evaluation:
$$\overrightarrow{\pi} = \langle \{1\}, \{2,3\} \rangle \rightarrow uc(\overrightarrow{\pi}) = min(5,6+1) = 5$$

	1	2	3
agent 1	5	4	2
agent 2	4	1	6

Egalitarian evaluation:
$$\overrightarrow{\pi} = \langle \{1\}, \{2,3\} \rangle \rightarrow uc(\overrightarrow{\pi}) = \min(5,6+1) = 5$$
 $\overrightarrow{\pi}' = \langle \{1,2\}, \{3\} \rangle \rightarrow uc(\overrightarrow{\pi}') = \min(4+5,6) = 6$

Preferences:

	1	2	3
agent 1	5	4	2
agent 2	4	1	6

Egalitarian evaluation:
$$\overrightarrow{\pi} = \langle \{1\}, \{2,3\} \rangle \rightarrow uc(\overrightarrow{\pi}) = \min(5,6+1) = 5$$
 $\overrightarrow{\pi}' = \langle \{1,2\}, \{3\} \rangle \rightarrow uc(\overrightarrow{\pi}') = \min(4+5,6) = 6$

Envy-freeness:

 $\overrightarrow{\pi}$ is **not** envy-free (agent 1 envies agent 2)

Preferences:

	1	2	3
agent 1	5	4	2
agent 2	4	1	6

Egalitarian evaluation:
$$\overrightarrow{\pi} = \langle \{1\}, \{2,3\} \rangle \rightarrow uc(\overrightarrow{\pi}) = \min(5,6+1) = 5$$
 $\overrightarrow{\pi}' = \langle \{1,2\}, \{3\} \rangle \rightarrow uc(\overrightarrow{\pi}') = \min(4+5,6) = 6$

Envy-freeness:

 $\overrightarrow{\pi}$ is **not** envy-free (agent 1 envies agent 2) $\overrightarrow{\pi}'$ is envy-free.

Fairness properties

In this work, we consider the 2nd approach: choose a **fairness property**, and find an allocation that satisfies it.

Fairness properties

In this work, we consider the 2nd approach: choose a **fairness property**, and find an allocation that satisfies it.

Problems:

- 1. such an allocation does not always exist
 - \rightarrow e.g. 2 agents, 1 object: no envy-free allocation exists
- 2. many such allocations can exist

In this work, we consider the 2nd approach: choose a **fairness property**, and find an allocation that satisfies it.

Problems:

- 1. such an allocation does not always exist
 - ightarrow e.g. 2 agents, 1 object: no envy-free allocation exists
- 2. many such allocations can exist

Idea: consider several fairness properties, and try to satisfy the most demanding one.

In this work we consider five such properties.

The problem

Five fairness criteria

Additional properties

A glimpse beyond additive preferences

Conclusion

Envy-freeness

Envy-freeness

An allocation $\overrightarrow{\pi}$ is **envy-free** if no agent envies another one.

Envy-freeness

An allocation $\overrightarrow{\pi}$ is **envy-free** if no agent envies another one.

Known facts:

- An envy-free allocation may not exist.
- Deciding whether an allocation is envy-free is easy (quadratic time).
- Deciding whether an instance (agents, objects, preferences) has an envy-free allocation is hard – NP-complete [Lipton et al., 2004].

Lipton, R., Markakis, E., Mossel, E., and Saberi, A. (2004). On approximately fair allocations of divisible goods. In *Proceedings of EC'04*.

Envy-freeness

An allocation $\overrightarrow{\pi}$ is **envy-free** if no agent envies another one.

Known facts:

- An envy-free allocation may not exist.
- Deciding whether an allocation is envy-free is easy (quadratic time).
- Deciding whether an instance (agents, objects, preferences) has an envy-free allocation is hard – NP-complete [Lipton et al., 2004].
- Lipton, R., Markakis, E., Mossel, E., and Saberi, A. (2004). On approximately fair allocations of divisible goods. In *Proceedings of EC'04*.

Proportional fair share (PFS):

- ▶ Initially defined by Steinhaus [Steinhaus, 1948] for continuous fair division (cake-cutting)
- ▶ Idea: each agent is "entitled" to at least the nth of the entire resource

Steinhaus, H. (1948). The problem of fair division. Econometrica, 16(1).

Proportional fair share (PFS):

- ▶ Initially defined by Steinhaus [Steinhaus, 1948] for continuous fair division (cake-cutting)
- ▶ Idea: each agent is "entitled" to at least the nth of the entire resource

Steinhaus, H. (1948). The problem of fair division. *Econometrica*, 16(1).

Proportional fair share

The **proportional fair share** of an agent i is equal to:

$$u_i^{\mathrm{PFS}} \stackrel{\text{def}}{=} \frac{u_i(\mathcal{O})}{n} = \sum_{o \in \mathcal{O}} \frac{w_i(o)}{n}$$

An allocation $\overrightarrow{\pi}$ satisfies (proportional) fair share if every agent gets at least her fair share.

Easy or known facts:

- Deciding whether an allocation satisfies proportional fair share (PFS) is easy (linear time).
- ▶ For a given instance, there may be no allocation satisfying PFS $\rightarrow e.g.$ 2 agents, 1 object
- ► This is not true for cake-cutting (divisible resource)
- $\to \mathsf{Dubins}\text{-}\mathsf{Spanier}$

Easy or known facts:

- Deciding whether an allocation satisfies proportional fair share (PFS) is easy (linear time).
- ▶ For a given instance, there may be no allocation satisfying PFS $\rightarrow e.g.$ 2 agents, 1 object
- ► This is not true for cake-cutting (divisible resource)

ightarrow Dubins-Spanier

New (?) facts:

- Deciding whether an instance has an allocation satisfying PFS is hard even for 2 agents – NP-complete [Partition].
- $ightharpoonup \overrightarrow{\pi}$ is envy-free $\Rightarrow \overrightarrow{\pi}$ satisfies PFS¹.

 $^{^{1}}$ Actually already noticed at least in an unpublished paper by Endriss, Maudet et al.

Easy or known facts:

- Deciding whether an allocation satisfies proportional fair share (PFS) is easy (linear time).
- ▶ For a given instance, there may be no allocation satisfying PFS $\rightarrow e.g.$ 2 agents, 1 object
- ► This is not true for cake-cutting (divisible resource)

ightarrow Dubins-Spanier

New (?) facts:

- Deciding whether an instance has an allocation satisfying PFS is hard even for 2 agents – NP-complete [Partition].
- $ightharpoonup \overrightarrow{\pi}$ is envy-free $\Rightarrow \overrightarrow{\pi}$ satisfies PFS¹.

¹ Actually already noticed at least in an unpublished paper by Endriss, Maudet et al.

Max-min fair share

PFS is nice, but sometimes too demanding for indivisible goods

ightarrow e.g. 2 agents, 1 object

PFS is nice, but sometimes too demanding for indivisible goods

ightarrow e.g. 2 agents, 1 object

Max-min fair share (MFS):

- ▶ Introduced recently [Budish, 2011]; not so much studied so far.
- Idea: in the cake-cutting case, PFS = the best share an agent can hopefully get for sure in a "I cut, you choose (I choose last)" game.
- ▶ Same game for indivisible goods \rightarrow MFS.

Budish, E. (2011).

The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes.

Journal of Political Economy, 119(6).

PFS is nice, but sometimes too demanding for indivisible goods

ightarrow e.g. 2 agents, 1 object

Max-min fair share (MFS):

- ▶ Introduced recently [Budish, 2011]; not so much studied so far.
- Idea: in the cake-cutting case, PFS = the best share an agent can hopefully get for sure in a "I cut, you choose (I choose last)" game.
- ▶ Same game for indivisible goods \rightarrow MFS.

Budish, E. (2011).

The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes.

Journal of Political Economy, 119(6).

Max-min fair share

The max-min fair share of an agent i is equal to:

$$u_i^{\text{MFS}} \stackrel{\text{def}}{=} \max_{\overrightarrow{\pi}} \min_{j \in \mathcal{A}} u_i(\pi_j)$$

An allocation $\overrightarrow{\pi}$ satisfies max-min fair share (MFS) if every agent gets at least her max-min fair share

	1	2	3
agent 1	5	4	2
agent 2	4	1	6

	1	2	3	
agent 1	5	4	2	$\rightarrow u_1^{\mathrm{MFS}} = 5$
agent 2	4	1	6	$\rightarrow u_2^{\rm MFS} = 5$

Preferences:

	1	2	3	
agent 1	5	4	2	$\rightarrow u_1^{\mathrm{MFS}} = 5$
agent 2	4	1	6	$\rightarrow u_2^{\rm MFS} = 5$

MFS evaluation:

$$\overrightarrow{\pi}=\langle\{1\},\{2,3\}\rangle\rightarrow \textit{u}_1(\pi_1)=5\geq 5;\;\textit{u}_2(\pi_2)=7\geq 5 \Rightarrow \mathsf{MFS}\;\mathsf{satisfied}$$

Preferences:

	1	2	3	
agent 1	5	4	2	$\rightarrow u_1^{\mathrm{MFS}} = 5$
agent 2	4	1	6	$\rightarrow u_2^{\rm MFS} = 5$

MFS evaluation:

$$\begin{array}{l} \overrightarrow{\pi}=\langle\{1\},\{2,3\}\rangle\rightarrow u_1(\pi_1)=5\geq 5;\ u_2(\pi_2)=7\geq 5\Rightarrow \text{MFS satisfied}\\ \overrightarrow{\pi}''=\langle\{2,3\},\{1\}\rangle\rightarrow u_1(\pi_1'')=6\geq 5;\ u_2(\pi_2'')=4< 5\Rightarrow \text{MFS not satisfied} \end{array}$$

Preferences:

	1	2	3	
agent 1	5	4	2	$\rightarrow u_1^{\mathrm{MFS}} = 5$
agent 2	4	1	6	$\rightarrow u_2^{\mathrm{MFS}} = 5$

MFS evaluation:

$$\begin{array}{l} \overrightarrow{\pi}=\langle\{1\},\{2,3\}\rangle\rightarrow u_1(\pi_1)=5\geq 5;\ u_2(\pi_2)=7\geq 5\Rightarrow \text{MFS satisfied}\\ \overrightarrow{\pi}''=\langle\{2,3\},\{1\}\rangle\rightarrow u_1(\pi_1'')=6\geq 5;\ u_2(\pi_2'')=4< 5\Rightarrow \text{MFS not satisfied} \end{array}$$

Example: 2 agents, 1 object.

Preferences:

	1	2	3	
agent 1	5	4	2	$\rightarrow u_1^{\mathrm{MFS}} = 5$
agent 2	4	1	6	$\rightarrow u_2^{\mathrm{MFS}} = 5$

MFS evaluation:

$$\begin{array}{l} \overrightarrow{\pi}=\langle\{1\},\{2,3\}\rangle\rightarrow u_1(\pi_1)=5\geq 5;\ u_2(\pi_2)=7\geq 5\Rightarrow \text{MFS satisfied}\\ \overrightarrow{\pi}''=\langle\{2,3\},\{1\}\rangle\rightarrow u_1(\pi_1'')=6\geq 5;\ u_2(\pi_2'')=4< 5\Rightarrow \text{MFS not satisfied} \end{array}$$

Example: 2 agents, 1 object.

$$u_1^{\mathrm{MFS}} = u_2^{\mathrm{MFS}} = 0
ightarrow \mathrm{every}$$
 allocation satisfies MFS!

Not very satisfactory, but can we do much better?

Facts:

- lacktriangle Computing u_i^{MFS} for a given agent is hard ightarrow NP-complete [Partition]
- ▶ Hence, deciding whether an allocation satisfies MFS is also hard.
- $ightharpoonup \overrightarrow{\pi}$ satisfies PFS $\Rightarrow \overrightarrow{\pi}$ satisfies MFS.

Facts:

- ▶ Computing u_i^{MFS} for a given agent is hard → **NP**-complete [Partition]
- ▶ Hence, deciding whether an allocation satisfies MFS is also hard.
- $ightharpoonup \overrightarrow{\pi}$ satisfies PFS $\Rightarrow \overrightarrow{\pi}$ satisfies MFS.

Conjecture

For each instance there is at least one allocation satisfying max-min fair share.

Facts:

- ▶ Computing u_i^{MFS} for a given agent is hard → **NP**-complete [Partition]
- ▶ Hence, deciding whether an allocation satisfies MFS is also hard.
- $ightharpoonup \overrightarrow{\pi}$ satisfies PFS $\Rightarrow \overrightarrow{\pi}$ satisfies MFS.

Conjecture

For each instance there is at least one allocation satisfying max-min fair share.

- ▶ Proved for **special cases** (2 agents, matching, scoring functions,...)
- ▶ No counterexample found on thousands of **random** instances.

Facts:

- ▶ Computing u_i^{MFS} for a given agent is hard → **NP**-complete [PARTITION]
- ▶ Hence, deciding whether an allocation satisfies MFS is also hard.
- $ightharpoonup \overrightarrow{\pi}$ satisfies PFS $\Rightarrow \overrightarrow{\pi}$ satisfies MFS.

Conjecture

For each instance there is at least one allocation satisfying max-min fair share.

- ▶ Proved for **special cases** (2 agents, matching, scoring functions,...)
- ▶ No counterexample found on thousands of **random** instances.

Min-max fair share

► Max-min fair share: "I cut, you choose (I choose last)"

Min-max fair share

- ► Max-min fair share: "I cut, you choose (I choose last)"
- ▶ Idea: why not do the opposite ("Someone cuts, I choose first")?

 \rightarrow Min-max fair share

- ► Max-min fair share: "I cut, you choose (I choose last)"
- ▶ Idea: why not do the opposite ("Someone cuts, I choose first")?

 \rightarrow Min-max fair share

Min-max fair share (mFS)

The min-max fair share of an agent i is equal to:

$$u_i^{ ext{mFS}} \stackrel{\text{def}}{=} \min_{\overrightarrow{\pi}} \max_{j \in \mathcal{A}} u_i(\pi_j)$$

An allocation $\overrightarrow{\pi}$ satisfies min-max fair share (mFS) if every agent gets at least her min-max fair share.

- ► Max-min fair share: "I cut, you choose (I choose last)"
- ▶ Idea: why not do the opposite ("Someone cuts, I choose first")?

 \rightarrow Min-max fair share

Min-max fair share (mFS)

The min-max fair share of an agent i is equal to:

$$u_i^{ ext{mFS}} \stackrel{\text{def}}{=} \min_{\overrightarrow{\pi}} \max_{j \in \mathcal{A}} u_i(\pi_j)$$

An allocation $\overrightarrow{\pi}$ satisfies min-max fair share (mFS) if every agent gets at least her min-max fair share.

- mFS = the worst share an agent can get in a "Someone cuts, I choose first" game.
- ▶ In the cake-cutting case, same as PFS.

Facts:

- ightharpoonup Computing $u_i^{ ext{mFS}}$ for a given agent is hard ightharpoonup coNP-complete [PARTITION]
- ▶ Hence, deciding whether an allocation satisfies mFS is also hard.
- ightharpoonup satisfies mFS $\Rightarrow \overrightarrow{\pi}$ satisfies PFS.
- $ightharpoonup \overrightarrow{\pi}$ is envy-free $\Rightarrow \overrightarrow{\pi}$ satisfies mFS.

Facts:

- ightharpoonup Computing u_i^{mFS} for a given agent is hard ightharpoonup coNP-complete [PARTITION]
- ▶ Hence, deciding whether an allocation satisfies mFS is also hard.
- $ightharpoonup \overrightarrow{\pi}$ satisfies mFS $\Rightarrow \overrightarrow{\pi}$ satisfies PFS.
- $ightharpoonup \overrightarrow{\pi}$ is envy-free $\Rightarrow \overrightarrow{\pi}$ satisfies mFS.

Competitive Equilibrium from Equal Incomes (CEEI)

- ▶ Set one price $p_o \le £1$ for each object o.
- ▶ Give £1 to each agent i.
- Let π_i^* be (among) the best share(s) agent i can buy with her £1.
- ▶ If $(\pi_1^{\star}, \dots, \pi_n^{\star})$ is a valid allocation, it forms, together with \overrightarrow{p} , a CEEI.

Allocation $\overrightarrow{\pi}$ satisfies CEEI if $\exists \overrightarrow{p}$ such that $(\overrightarrow{\pi}, \overrightarrow{p})$ is a CEEI.

Competitive Equilibrium from Equal Incomes (CEEI)

- ▶ Set one price $p_o \le £1$ for each object o.
- ▶ Give £1 to each agent i.
- Let π_i^* be (among) the best share(s) agent i can buy with her £1.
- ▶ If $(\pi_1^{\star}, \dots, \pi_n^{\star})$ is a valid allocation, it forms, together with \overrightarrow{p} , a CEEI.

Allocation $\overrightarrow{\pi}$ satisfies CEEI if $\exists \overrightarrow{p}$ such that $(\overrightarrow{\pi}, \overrightarrow{p})$ is a CEEI.

- Classical notion in economics [Moulin, 1995]
- ▶ Not so much studied in computer science (except [Othman et al., 2010])
- Moulin, H. (1995).
 Cooperative Microe

Cooperative Microeconomics, A Game-Theoretic Introduction. Prentice Hall.

Othman, A., Sandholm, T., and Budish, E. (2010). Finding approximate competitive equilibria: efficient and fair course allocation. In *Proceedings of AAMAS'10*.

Competitive Equilibrium from Equal Incomes

Example: 4 objects $\{1, 2, 3, 4\}$, 2 agents $\{1, 2\}$.

Preferences:

	1	2	3	4
agent 1	7	2	6	10
agent 2	7	6	8	4

Preferences:

	1	2	3	4
agent 1	7	2	6	10
agent 2	7	6	8	4

Allocation $\langle\{1,4\},\{2,3\}\rangle\text{, with prices }\langle0.8,0.2,0.8,0.2\rangle\text{ forms a CEEI.}$

Preferences:

	1	2	3	4
agent 1	7	2	6	10
agent 2	7	6	8	4

Allocation $\langle \{1,4\}, \{2,3\} \rangle$, with prices $\langle 0.8, 0.2, 0.8, 0.2 \rangle$ forms a CEEI.

Complexity supposedly hard, but still open.

Fact: $\overrightarrow{\pi}$ satisfies CEEI $\Rightarrow \overrightarrow{\pi}$ is envy-free.

Preferences:

	1	2	3	4
agent 1	7	2	6	10
agent 2	7	6	8	4

Allocation $\langle\{1,4\},\{2,3\}\rangle$, with prices $\langle0.8,0.2,0.8,0.2\rangle$ forms a CEEI.

Complexity supposedly hard, but still open.

Fact: $\overrightarrow{\pi}$ satisfies CEEI $\Rightarrow \overrightarrow{\pi}$ is envy-free.

Interpretation

1. For all allocation $\overrightarrow{\pi}$:

$$(\overrightarrow{\pi} \models \text{CEEI}) \Rightarrow (\overrightarrow{\pi} \models \text{EF}) \Rightarrow (\overrightarrow{\pi} \models \text{mFS}) \Rightarrow (\overrightarrow{\pi} \models \text{PFS}) \Rightarrow (\overrightarrow{\pi} \models \text{MFS})$$

 $\rightarrow \text{ the highest property } \overrightarrow{\pi} \text{ satisfies, the most satisfactory it is.}$

1. For all allocation $\overrightarrow{\pi}$:

$$(\overrightarrow{\pi} \vDash \mathrm{CEEI}) \Rightarrow (\overrightarrow{\pi} \vDash \mathrm{EF}) \Rightarrow (\overrightarrow{\pi} \vDash \mathrm{mFS}) \Rightarrow (\overrightarrow{\pi} \vDash \mathrm{PFS}) \Rightarrow (\overrightarrow{\pi} \vDash \mathrm{MFS})$$

ightarrow the highest property $\overrightarrow{\pi}$ satisfies, the most satisfactory it is.

2. If $\mathcal{I}_{|\mathcal{P}}$ is the set of instances s.t at least one allocation satisfies \mathcal{P} :

$$\mathcal{I}_{|\text{CEEI}} \subset \mathcal{I}_{|\text{EF}} \subset \mathcal{I}_{|\text{mFS}} \subset \mathcal{I}_{|\text{PFS}} \subset \mathcal{I}_{|\text{MFS}} (= \mathcal{I}?)$$

 \rightarrow the lowest subset, the less "conflict-prone".

1. For all allocation $\overrightarrow{\pi}$:

$$(\overrightarrow{\pi} \vDash \mathrm{CEEI}) \Rightarrow (\overrightarrow{\pi} \vDash \mathrm{EF}) \Rightarrow (\overrightarrow{\pi} \vDash \mathrm{mFS}) \Rightarrow (\overrightarrow{\pi} \vDash \mathrm{PFS}) \Rightarrow (\overrightarrow{\pi} \vDash \mathrm{MFS})$$

ightarrow the highest property $\overrightarrow{\pi}$ satisfies, the most satisfactory it is.

2. If $\mathcal{I}_{|\mathcal{P}}$ is the set of instances s.t at least one allocation satisfies \mathcal{P} :

$$\mathcal{I}_{|\text{CEEI}} \subset \mathcal{I}_{|\text{EF}} \subset \mathcal{I}_{|\text{mFS}} \subset \mathcal{I}_{|\text{PFS}} \subset \mathcal{I}_{|\text{MFS}} (= \mathcal{I}?)$$

 \rightarrow the lowest subset, the less "conflict-prone".

Two extreme examples:

- lacksquare 2 agents, 1 object ightarrow only in $\mathcal{I}_{|\mathrm{MFS}}$
- ▶ 2 agents, 2 objects, with

	1	2	
agent 1	1000	0	-
agent 2	0	1000	

$$ightarrow$$
 in $\mathcal{I}_{| ext{CEEI}}$ (with e.g. $\overrightarrow{m{p}}=\langle 1,1
angle$).

1. Strict inclusions

Are these inclusions strict?

$$\mathcal{I}_{|\mathrm{CEEI}} \subset \mathcal{I}_{|\mathrm{EF}} \subset \mathcal{I}_{|\mathrm{mFS}} \subset \mathcal{I}_{|\mathrm{PFS}} \subset \mathcal{I}_{|\mathrm{MFS}} (=\mathcal{I}?)$$

 ${\mathcal I}_{|{\rm CEEI}} \subset {\mathcal I}_{|{\rm EF}} \subset {\mathcal I}_{|{\rm mFS}} \subset {\mathcal I}_{|{\rm PFS}} \subset {\mathcal I}_{|{\rm MFS}} (={\mathcal I}?)$

Are these inclusions strict? Yes, they are, and we can prove it!

Additional properties

- 1. Strict inclusions $\mathcal{I}_{|\mathrm{CEEI}} \subset \mathcal{I}_{|\mathrm{EF}} \subset \mathcal{I}_{|\mathrm{mFS}} \subset \mathcal{I}_{|\mathrm{PFS}} \subset \mathcal{I}_{|\mathrm{MFS}} (= \mathcal{I}?)$ Are these inclusions strict? Yes, they are, and we can prove it!
- 2. Properties and egalitarianism?
 - ► Envy-freeness: question studied in [Brams and King, 2005]
 - Max-min fair share: egalitarian optimal allocations almost always satisfy max-min fair share.

- 1. Strict inclusions $\mathcal{I}_{|\mathrm{CEEI}} \subset \mathcal{I}_{|\mathrm{EF}} \subset \mathcal{I}_{|\mathrm{mFS}} \subset \mathcal{I}_{|\mathrm{PFS}} \subset \mathcal{I}_{|\mathrm{MFS}} (=\mathcal{I}?)$ Are these inclusions strict? Yes, they are, and we can prove it!
- 2. Properties and egalitarianism?
 - ► Envy-freeness: question studied in [Brams and King, 2005]
 - Max-min fair share: egalitarian optimal allocations almost always satisfy max-min fair share.

3. Interpersonal comparison

- Egalitarianism requires the preferences to be comparable:
 - either expressed on a same scale (e.g. money)...
 - ...or normalized (e.g. Kalai-Smorodinsky)
- The five fairness criteria introduced do not (independence of the individual utility scales).
- \rightarrow This is a very appealing property.

The problem

Five fairness criteria

Additional properties

A glimpse beyond additive preferences

Conclusion

Conjecture

For each instance there is at least one allocation that satisfies max-min fair share.

MFS and k-additive preferences

Reminder: For additive preferences:

Conjecture

For each instance there is at least one allocation that satisfies max-min fair share.

For k-additive preferences ($k \ge 2$) this is obviously not true:

Example: 4 objects, 2 agents

Conjecture

For each instance there is at least one allocation that satisfies max-min fair share.

For k-additive preferences ($k \ge 2$) this is obviously not true:

Example: 4 objects, 2 agents

Agent 1:
$$w(\{1,2\}) = w(\{3,4\}) = 1 \rightarrow u_1^{\mathrm{MFS}} = 1$$

Conjecture

For each instance there is at least one allocation that satisfies max-min fair share.

For k-additive preferences ($k \ge 2$) this is obviously not true:

Example: 4 objects, 2 agents

Agent 1:
$$w(\{1,2\}) = w(\{3,4\}) = 1 \rightarrow u_1^{\text{MFS}} = 1$$

Agent 2: $w(\{1,4\}) = w(\{2,3\}) = 1 \rightarrow u_2^{\text{MFS}} = 1$

Conjecture

For each instance there is at least one allocation that satisfies max-min fair share.

For k-additive preferences ($k \ge 2$) this is obviously not true:

Example: 4 objects, 2 agents

Agent 1:
$$w(\{1,2\}) = w(\{3,4\}) = 1 \rightarrow u_1^{\mathrm{MFS}} = 1$$

Agent 2: $w(\{1,4\}) = w(\{2,3\}) = 1 \rightarrow u_2^{\mathrm{MFS}} = 1$

Worse... Deciding whether there exists one is **NP**-complete [Partition].

The problem

Five fairness criteria

Additional properties

A glimpse beyond additive preferences

Conclusion

Summary

Summary

A scale of properties (for numerical additive preferences)...

Max-min fair share

Conjecture: always possible to satisfy it

Proportional fair share

Cannot be satisfied $\emph{e.g.}$ in the 1 object, 2 agents case

Max-min fair share

Conjecture: always possible to satisfy it

Envy-freeness Requires somewhat complementary preferences
Min-max fair share
Proportional fair share Cannot be satisfied e.g. in the 1 object, 2 agents case
Max-min fair share Conjecture: always possible to satisfy it

Competitive Equilibrium from Equal Incomes Requires complementary preferences
Envy-freeness Requires somewhat complementary preferences
Min-max fair share
Proportional fair share Cannot be satisfied <i>e.g.</i> in the 1 object, 2 agents case
Max-min fair share Conjecture: always possible to satisfy it

Competitive Equilibrium from Equal Incomes Requires complementary preferences
Envy-freeness Requires somewhat complementary preferences
Min-max fair share
Proportional fair share Cannot be satisfied <i>e.g.</i> in the 1 object, 2 agents case
Max-min fair share Conjecture: always possible to satisfy it

A possible approach to fairness in multiagent resource allocation problems:

- 1. Determine the highest satisfiable criterion.
- 2. Find an allocation that satisfies this criterion.
- 3. Explain to the upset agents that we cannot do much better.

Future directions

- ► Close the **conjecture** and missing complexity results.
- Develop efficient algorithms (possibly in conjunction with approximation of fairness criteria)
- **Experiments**: Build a cartography of resource allocation problems.
- ▶ Extend the results to more expressive preference languages.

Future directions

- ► Close the **conjecture** and missing complexity results.
- Develop efficient algorithms (possibly in conjunction with approximation of fairness criteria)
- **Experiments**: Build a cartography of resource allocation problems.
- ▶ Extend the results to more expressive preference languages.

- ▶ The five criteria do not require interpersonal comparison of utilities.
- ▶ Moreover: Four of them are purely ordinal (PFS is not)
- ▶ Do the results extend to (separable) ordinal preferences ?