

Picking Sequences for Resource Allocation

Sylvain Bouveret LIG – Univ. Grenoble-Alpes

Séminaire d'Économie Théorique Centre d'Économie de la Sorbonne, February the 11th, 2022

Fair division of indivisible goods...

. ⊣ 2/50

Fair division of indivisible goods...

Fair division of indivisible goods...

Fair division of indivisible goods...

How to solve this problem

1 Ask the agents to give their preferences and use a (centralized) collective decision making procedure.

- 3 / 50

How to solve this problem

1 Ask the agents to give their preferences and use a (centralized) collective decision making procedure.

How to solve this problem

1 Ask the agents to give their preferences and use a (centralized) collective decision making procedure.

3 / 50

How to solve this problem

1 Ask the agents to give their preferences and use a (centralized) collective decision making procedure.

3 / 50

- 1 Ask the agents to give their preferences and use a (centralized) collective decision making procedure.
- 2 Start from a random allocation and ask the agents to negotiate.

How to solve this problem

- 1 Ask the agents to give their preferences and use a (centralized) collective decision making procedure.
- 2 Start from a random allocation and ask the agents to negotiate.

3 / 50

- 1 Ask the agents to give their preferences and use a (centralized) collective decision making procedure.
- 2 Start from a random allocation and ask the agents to negotiate.

How to solve this problem

- 1 Ask the agents to give their preferences and use a (centralized) collective decision making procedure.
- 2 Start from a random allocation and ask the agents to negotiate.
- 3 Use an interactive protocol like **picking sequences**.

3 / 50

How to solve this problem

- 1 Ask the agents to give their preferences and use a (centralized) collective decision making procedure.
- 2 Start from a random allocation and ask the agents to negotiate.
- 3 Use an interactive protocol like **picking sequences**.

⊣ 3/50

- 1 Ask the agents to give their preferences and use a (centralized) collective decision making procedure.
- 2 Start from a random allocation and ask the agents to negotiate.
- 3 Use an interactive protocol like **picking sequences**.

- 1 Ask the agents to give their preferences and use a (centralized) collective decision making procedure.
- 2 Start from a random allocation and ask the agents to negotiate.
- 3 Use an interactive protocol like **picking sequences**.

- 1 Ask the agents to give their preferences and use a (centralized) collective decision making procedure.
- 2 Start from a random allocation and ask the agents to negotiate.
- 3 Use an interactive protocol like **picking sequences**.

- 1 Ask the agents to give their preferences and use a (centralized) collective decision making procedure.
- 2 Start from a random allocation and ask the agents to negotiate.
- 3 Use an interactive protocol like **picking sequences**.

- 1 Ask the agents to give their preferences and use a (centralized) collective decision making procedure.
- 2 Start from a random allocation and ask the agents to negotiate.
- 3 Use an interactive protocol like **picking sequences**.

How to solve this problem

- 1 Ask the agents to give their preferences and use a (centralized) collective decision making procedure.
- 2 Start from a random allocation and ask the agents to negotiate.
- 3 Use an interactive protocol like **picking sequences**.

In this presentation, we will focus on picking sequences

3 / 50

More formally...

Ask the individuals to pick in turn their most preferred object among the remaining ones, according to some **predefined sequence**.

Example

3 individuals A, B, C, 6 items, sequence $ABCCBA \rightarrow A$ chooses first (and takes her preferred item), then B, then C, then C again...

4 / 50

Sequences

- Natural and simple protocol
- Used in practice
- Preference elicitation-free
- Board games
- Draft mechanisms (sport)
- Course allocation (Harvard Business School)

• ...

The optimal sequence problem

We "feel" that ABCCBA is fairer than AABBCC...

. → 6 / 50

The optimal sequence problem

We "feel" that ABCCBA is fairer than AABBCC...

The optimal sequence problem

Given a number of agents and a number of objects (+ some additional assumptions), what is the **fairest** sequence?

+ 6 / 50

The optimal sequence problem

We "feel" that ABCCBA is fairer than AABBCC...

The optimal sequence problem

Given a number of agents and a number of objects (+ some additional assumptions), what is the **fairest** sequence?

Today, we will mostly focus on the optimal sequence problem (+ touch upon some other notions like efficiency and strategyproofness)

+ 6 / 50

The optimal sequence problem

What is the fairest sequence?

Agents, objects, preferences...

- A set \mathcal{O} of p objects $\{1, \ldots, p\}$
- A set \mathcal{N} of n agents $\{A, B, \ldots, x\}$
- A central authority (CA) must find a policy (a sequence of agents) $\pi: \{1, \dots, p\} \rightarrow \{A, B, \dots, x\}$
- The central authority assumes that each agent *i* has a (private) ranking *⊢_i* over 𝒪 (ex: 6 ≻ 1 ≻ 4 ≻ 5 ≻ 2 ≻ 3)

→ 8/50

Example

Example

- $A: 1 \succ 2 \succ 3 \succ 4 \succ 5$
- $B: 4 \succ 2 \succ 5 \succ 1 \succ 3$
- $C: 1 \succ 3 \succ 5 \succ 4 \succ 2$

Example

Example

- $A: 1 \succ 2 \succ 3 \succ 4 \succ 5$
- $B: 4 \succ 2 \succ 5 \succ 1 \succ 3$
- $C: 1 \succ 3 \succ 5 \succ 4 \succ 2$

k	0
$s(A)_k^{\pi}$	Ø
$s(B)_k^{\pi}$	Ø
$s(C)_k^{\pi}$	Ø
\mathcal{O}_k^{π}	Ø

Example

Example

- $A: 1 \succ 2 \succ 3 \succ 4 \succ 5$
- $B: 4 \succ 2 \succ 5 \succ 1 \succ 3$
- *C* : 1 ≻ 3 ≻ 5 ≻ 4 ≻ 2

k	0	1
$s(A)_k^{\pi}$	Ø	1
$s(B)_k^{\pi}$	Ø	Ø
$s(C)_k^{\pi}$	Ø	Ø
\mathcal{O}_k^π	Ø	1

Example

Example

- $A: 1 \succ 2 \succ 3 \succ 4 \succ 5$
- $B: 4 \succ 2 \succ 5 \succ 1 \succ 3$
- $C: 1 \succ 3 \succ 5 \succ 4 \succ 2$

k	0	1	2
$s(A)_k^{\pi}$	Ø	1	1
$s(B)_k^{\pi}$	Ø	Ø	4
$s(C)_k^{\pi}$	Ø	Ø	Ø
\mathcal{O}_k^π	Ø	1	14

Example

Example

5 objects, 3 agents, $\pi = ABCCB...$

- *A* : 1 ≻ 2 ≻ 3 ≻ 4 ≻ 5
- $B: 4 \succ 2 \succ 5 \succ 1 \succ 3$
- *C* : 1 ≻ 3 ≻ 5 ≻ 4 ≻ 2

k	0	1	2	3
$s(A)_k^{\pi}$	Ø	1	1	1
$s(B)_k^{\pi}$	Ø	Ø	4	4
$s(C)_k^{\pi}$	Ø	Ø	Ø	3
\mathcal{O}_k^π	Ø	1	14	143

9 / 50

Example

Example

- $A: 1 \succ 2 \succ 3 \succ 4 \succ 5$
- $B: 4 \succ 2 \succ 5 \succ 1 \succ 3$
- *C* : 1 ≻ 3 ≻ 5 ≻ 4 ≻ 2

k	0	1	2	3	4
$s(A)_k^{\pi}$	Ø	1	1	1	1
$s(B)_k^{\pi}$	Ø	Ø	4	4	4
$s(C)_k^{\pi}$	Ø	Ø	Ø	3	35
\mathcal{O}_k^{π}	Ø	1	14	143	1435

Example

Example

5 objects, 3 agents, $\pi = ABCC\mathbf{B}...$

- $A: 1 \succ 2 \succ 3 \succ 4 \succ 5$
- $B: 4 \succ 2 \succ 5 \succ 1 \succ 3$
- *C* : 1 ≻ 3 ≻ 5 ≻ 4 ≻ 2

k	0	1	2	3	4	5
$s(A)_k^{\pi}$	Ø	1	1	1	1	1
$s(C)_k^{\pi}$	Ø	Ø	4	4	4	42
$s(C)_k^{\pi}$	Ø	Ø	Ø	3	35	35
\mathcal{O}_k^{π}	Ø	1	14	143	1435	14352

We only have rankings over objects...

 \rightarrow How to compare two allocations ?

Scoring functions

We only have rankings over objects...

 \rightarrow How to compare two allocations ?

Two natural assumptions:

- 1 Scoring: We have a common scoring function $g : \{1, ..., p\} \mapsto \mathbb{N}$ mapping each rank to a utility.
- 2 Additivity: These utilities are additive.

Scoring functions

We only have rankings over objects...

 \rightarrow How to compare two allocations ?

Two natural assumptions:

- 1 Scoring: We have a common scoring function $g : \{1, ..., p\} \mapsto \mathbb{N}$ mapping each rank to a utility.
- 2 Additivity: These utilities are additive.

$$\succ_i$$
 6 1 4 5 2 3

Scoring functions

We only have rankings over objects...

 \rightarrow How to compare two allocations ?

Two natural assumptions:

- 1 Scoring: We have a common scoring function $g : \{1, ..., p\} \mapsto \mathbb{N}$ mapping each rank to a utility.
- 2 Additivity: These utilities are additive.

\succ_i	6	1	4	5	2	3
Borda	6	5	4	3	2	1

Scoring functions

We only have rankings over objects...

 \rightarrow How to compare two allocations ?

Two natural assumptions:

- 1 Scoring: We have a common scoring function $g : \{1, ..., p\} \mapsto \mathbb{N}$ mapping each rank to a utility.
- 2 Additivity: These utilities are additive.

\succ_i	6	1	4	5	2	3
Borda	6	5	4	3	2	1
lexicographic	32	16	8	4	2	1

Scoring functions

We only have rankings over objects...

 \rightarrow How to compare two allocations ?

Two natural assumptions:

- 1 Scoring: We have a common scoring function $g : \{1, ..., p\} \mapsto \mathbb{N}$ mapping each rank to a utility.
- 2 Additivity: These utilities are additive.

\succ_i	6	1	4	5	2	3
Borda	6	5	4	3	2	1
lexicographic	32	16	8	4	2	1
Quasi-Indifference	$1+5\varepsilon$	$1+4\varepsilon$	$1+3\varepsilon$	$1+2\varepsilon$	$1 + \varepsilon$	1

Back to the example

Example

5 objects, 3 agents, $\pi = ABCCB...$

- $A: \mathbf{1} \succ \mathbf{2} \succ \mathbf{3} \succ \mathbf{4} \succ \mathbf{5}$
- $B: \mathbf{4} \succ \mathbf{2} \succ \mathbf{5} \succ \mathbf{1} \succ \mathbf{3}$
- *C* : 1 ≻ 3 ≻ 5 ≻ 4 ≻ 2

With π , agent A gets 1, agent B gets 24, agent C gets 35

Back to the example

Example

5 objects, 3 agents, $\pi = ABCCB...$

- $A: \mathbf{1} \succ \mathbf{2} \succ \mathbf{3} \succ \mathbf{4} \succ \mathbf{5}$
- $B: \mathbf{4} \succ \mathbf{2} \succ \mathbf{5} \succ \mathbf{1} \succ \mathbf{3}$
- *C* : 1 ≻ 3 ≻ 5 ≻ 4 ≻ 2

With π , agent A gets 1, agent B gets 24, agent C gets 35

- Borda: $u_A(\pi) = 5$; $u_B(\pi) = 5 + 4 = 9$; $u_C(\pi) = 4 + 3 = 7$.
- lexicographic: $u_A(\pi) = 16$; $u_B(\pi) = 24$; $u_C(\pi) = 12$.
- **QI:** $u_A(\pi) = 1 + 4\varepsilon; u_B(\pi) = 2 + 7\varepsilon; u_C(\pi) = 2 + 5\varepsilon.$

Social welfare

We use a collective utility function to aggregate the individual utilities.

Two well-known functions:

- utilitarian: $F(u_A, \ldots, u_x) = \sum_{i \in \mathcal{N}} u_i;$
- egalitarian: $F(u_A, \ldots, u_x) = \min_{i \in \mathcal{N}} u_i;$
- (We will also speak about **Nash** in the second part: $F(u_A, \ldots, u_x) = \prod_{i \in \mathcal{N}} u_i$).

Uncertainty

The procedure is elicitation-free...

 \rightarrow Which information can we use to find the best sequence ?

Uncertainty

The procedure is elicitation-free...

 \rightarrow Which information can we use to find the best sequence ?

The CA has a prior probability on the preference profile:

- Full independence (FI): each profile $R = \langle \succ_A, \ldots, \succ_x \rangle$ is equally probable
- Full correlation (FC): all the agents have the same ranking (R = ⟨≻,...,≻⟩)

Uncertainty

The procedure is elicitation-free...

 \rightarrow Which information can we use to find the best sequence ?

The CA has a prior probability on the preference profile:

- Full independence (FI): each profile $R = \langle \succ_A, \ldots, \succ_x \rangle$ is equally probable
- Full correlation (FC): all the agents have the same ranking (R = ⟨≻,...,≻⟩)

Expected individual and collective utilities:

$$\Xi U^{\Psi}(i,\pi) = \mathbb{E}_{R \sim \Psi}[u^{R}(i,\pi)] = \sum_{R \in Prof(\mathcal{N},\mathcal{O})} Pr_{\Psi}(R) \times u_{i}^{R}(\pi,R).$$

$$ESW_F^{\Psi}(\pi) = F(EU^{\Psi}(1,\pi),\ldots,EU^{\Psi}(n,\pi)).$$

Back to the example

Example

5 objects, 3 agents, $\pi = ABCCB$, $g = g_{Borda}$, full independence. What is agent C's expected utility with this sequence ?

Back to the example

Example

5 objects, 3 agents, $\pi = ABCCB$, $g = g_{Borda}$, full independence. What is agent C's expected utility with this sequence ? C's preferences: $? \succ ? \succ ? \succ ? \succ ?$

 $EU^{FI}(3,\pi) =$

Picking Sequences for Resource Allocation

Back to the example

Example

$$EU^{FI}(3,\pi) = \frac{1}{\binom{5}{2}} \times (3+2)$$

Back to the example

Example

$$EU^{FI}(3,\pi) = 0.5 + \frac{1}{\binom{5}{2}} \times (4+2)$$

Back to the example

Example

$$EU^{FI}(3,\pi) = 0.5 + 0.6 + rac{1}{{5 \choose 2}} imes (5+2)$$

Back to the example

Example

$$EU^{FI}(3,\pi) = 0.5 + 0.6 + 0.6 + \frac{2}{\binom{5}{2}} \times (4+3)$$

Back to the example

Example

$$EU^{FI}(3,\pi) = 0.5 + 0.6 + 0.6 + 1.4 + \frac{2}{\binom{5}{2}} \times (5+3)$$

Back to the example

Example

$$EU^{FI}(3,\pi) = 0.5 + 0.6 + 0.6 + 1.4 + 1.6 + \frac{\binom{3}{2}}{\binom{5}{2}} \times (5+4)$$

Back to the example

Example

5 objects, 3 agents, $\pi = ABCCB$, $g = g_{Borda}$, full independence. What is agent C's expected utility with this sequence ? C's preferences: $? \succ ? \succ ? \succ ? \succ ?$

 $EU^{FI}(3,\pi) = 0.5 + 0.6 + 0.6 + 1.4 + 1.6 + 2.7 = 7.5$

Summary

Instance:

- a number of agents *n*
- a number of objects p
- a scoring function g
- a prior (*i.e* a correlation assumption) $\Psi \in \{FC, FI\}$
- a collective utility function F

• Question:

• What is the policy π maximizing $ESW_F^{\Psi}(\pi)$, under correlation profile Ψ ?

Some general results

1. Full correlation

Some general results

1. Full correlation

Utilitarian CUF (sum)

All policies have the same expected value!

Some general results

1. Full correlation

Utilitarian CUF (sum)

All policies have the same expected value!

Egalitarian CUF (min)

Sequential allocation is **NP**-complete.

(Reduction from [PARTITION])

Some general results

1. Full correlation

Utilitarian CUF (sum)

All policies have the same expected value!

Egalitarian CUF (min)

Sequential allocation is NP-complete.

(Reduction from [PARTITION]) What about...

- ... lexicographic scoring ?
- ... quasi-indifference scoring ?

• ... Borda scoring ?

Lexicographic scoring

Egalitarian CUF (min)

Results

Optimal policies: $\sigma(A)\sigma(B)\ldots\sigma(x)\sigma(x)^{p-n}$ (where σ is a permutation of $\{A, B, \ldots, x\}$)

Lexicographic scoring

Egalitarian CUF (min)

Results

Optimal policies: $\sigma(A)\sigma(B)\ldots\sigma(x)\sigma(x)^{p-n}$ (where σ is a permutation of $\{A, B, \ldots, x\}$)

Example: $\pi = ABCCCC$

- $EU^{FC}(1,\pi) = 32$
- $EU^{FC}(2,\pi) = 16$
- $EU^{FC}(3,\pi) = 8 + 4 + 2 + 1 = 15$

▲

Borda scoring

$$\succ_i$$
 6 1 4 5 2 3
Borda 6 5 4 3 2 1

Borda scoring

$$\succ_i$$
 6 1 4 5 2 3
Borda 6 5 4 3 2 1

Egalitarian CUF (min)

This is **polynomial** in *p*.

Hint: The number of possible utility values is bounded for an agent $(p(p+1)/2) \rightarrow$ use a dynamic programming algorithm.

Egalitarian CUF (min)

Comes down to solving the Borda case!

Egalitarian CUF (min)

Comes down to solving the Borda case!

Intuition:

• let
$$m = \lfloor \frac{p}{n} \rfloor$$
 and $q = p - nm$

• Optimal policies:
$$\pi = \underbrace{AABB}_{n-q \text{ agents}} \underbrace{CCCDDD}_{CCCDDD} \text{ and } \pi' = \underbrace{ABBA}_{n-q \text{ agents}} \underbrace{CCCDDD}_{CCCDDD}$$

- The q last agents are $\mathsf{OK} o u \geq m+1$

• The n-q first agents: $u = m + x \cdot \varepsilon$ ($x \rightarrow$ Borda)

2. Full independence

2. Full independence

Conjecture (2011)

Computing the expected utility of a sequence is **NP**-complete. Computing the **optimal** sequence probably harder.

- 20 / 50

Computing the expected utility of a sequence is $\ensuremath{\mathsf{NP}}\xspace$ -complete.

Results

Computing the expected utility of a sequence is **NP**-complete **polynomial** [Kalinowski et al., 2013].

Kalinowski, T., Narodytska, N., and Walsh, T. (2013).

A social welfare optimal sequential allocation procedure. In *Proceedings of IJCAI 2013*.

... 21 / 50

Results

Computing the expected utility of a sequence is **NP**-complete **polynomial** [Kalinowski et al., 2013].

Computing the **optimal** sequence probably harder.

Kalinowski, T., Narodytska, N., and Walsh, T. (2013).

A social welfare optimal sequential allocation procedure. In *Proceedings of IJCAI 2013*.

- 21 / 50

Results

Computing the expected utility of a sequence is **NP**-complete **polynomial** [Kalinowski et al., 2013].

Computing the **optimal** sequence probably harder.

- the **alternating policy** (*ABABABAB...*) is optimal for Borda, utilitarian social welfare
- complexity unknown for other social welfare and scoring functions (NP-hardness conjectured)

-	-	

Kalinowski, T., Narodytska, N., and Walsh, T. (2013).

A social welfare optimal sequential allocation procedure. In *Proceedings of IJCAI 2013*.

. 21 / 50

р	<i>n</i> = 2	<i>n</i> = 3
4		
5		
6		
8		
10		

р	<i>n</i> = 2	<i>n</i> = 3
4	ABBA	
5		
6		
8		
10		

22 / 50

р	<i>n</i> = 2	<i>n</i> = 3
4	ABBA	ABCC
5		
6		
8		
10		

22 / 50

р	<i>n</i> = 2	<i>n</i> = 3
4	ABBA	ABCC
5	AABBB	ABCCB
6		
8		
10		

22 / 50

Results

Some examples

Assumptions: Full independence, egalitarian CUF, Borda scoring function.

р	<i>n</i> = 2	<i>n</i> = 3
4	ABBA	ABCC
5	AABBB	ABCCB
6	ABABBA	ABCCBA
8	ABBABAAB	AACCBBCB
10	ABBAABABBA	ABCABBCACC

... 22 / 50

A small digression about strategical issues (manipulation)

Is the protocol strategy-proof?

Manipulation?

- A set $\mathcal O$ of p objects $\{1,\ldots,p\}$
- A set \mathcal{N} of n agents $\{A, B, \ldots, x\}$
- A central authority (CA) has chosen a policy π and will execute it
- The agents have their own private preferences \rightarrow picking strategy.

Manipulation?

Example

2 agents, 4 objects:

- *A*: 1 ≻ 2 ≻ 3 ≻ 4
- *B*: 2 ≻ 3 ≻ 4 ≻ 1

Sequence $\pi = ABBA \rightarrow \{14|23\}.$

Manipulation?

Example

2 agents, 4 objects:

- *A*: 1 ≻ 2 ≻ 3 ≻ 4
- $B: 2 \succ 3 \succ 4 \succ 1$

Sequence $\pi = ABBA \rightarrow \{14|23\}.$

What if A knows B's preferences and acts maliciously?

Manipulation?

Example

2 agents, 4 objects:

- A: 1 ≻ 2 ≻ 3 ≻ 4
- $B: 2 \succ 3 \succ 4 \succ 1$

Sequence $\pi = ABBA \rightarrow \{14|23\}.$

What if A knows B's preferences and acts maliciously?

She can manipulate by picking 2 instead of 1 at first step \rightarrow {12|34}.

More formally

- A set \mathcal{O} of p objects $\{1, \ldots, p\}$
- A set \mathcal{N} of n agents $\{A, B, \ldots, x\}$
- A policy π
- The agents have their own private preferences (which may or may not be additive) and use them for their **picking strategy**.

More formally

- A set $\mathcal O$ of p objects $\{1,\ldots,p\}$
- A set \mathcal{N} of n agents $\{A, B, \ldots, x\}$
- A **policy** *π*
- The agents have their own private preferences (which may or may not be additive) and use them for their **picking strategy**.

The cheating agent (A) knows:

- the sequence
- her own (general) picking strategy
- the others' picking strategy (assumed to be simple and deterministic as if each agent had an underlying linear order over the objects)

→ 26 / 50

More formally

- A set \mathcal{O} of p objects $\{1, \ldots, p\}$
- A set \mathcal{N} of n agents $\{A, B, \ldots, x\}$
- A **policy** *π*
- The agents have their own private preferences (which may or may not be additive) and use them for their **picking strategy**.

The cheating agent (A) knows:

- the sequence
- her own (general) picking strategy
- the others' picking strategy (assumed to be simple and deterministic as if each agent had an underlying linear order over the objects)

She wants:

• to get the best bundle she can get.

→ 26 / 50

More formally

- A set $\mathcal O$ of p objects $\{1,\ldots,p\}$
- A set \mathcal{N} of n agents $\{A, B, \ldots, x\}$
- A **policy** *π*
- The agents have their own private preferences (which may or may not be additive) and use them for their **picking strategy**.

The cheating agent (A) knows:

- the sequence
- her own (general) picking strategy
- the others' picking strategy (assumed to be simple and deterministic as if each agent had an underlying linear order over the objects)

She wants:

• to get the best bundle she can get.

Her only possible cheating actions:

• choose at given steps **not** to pick her preferred objects.

Bad news...

(Folk?) theorem

The only strategyproof picking sequences are those made of contiguous blocks of agents (e.g. *A*...*AB*...*BC*...*C*).

Bad news...

(Folk?) theorem

The only strategyproof picking sequences are those made of contiguous blocks of agents (e.g. *A...AB...BC...C*).

Two possible actions to prevent manipulation as a mechanism designer:

- Impose strategyproofness
- · Use complexity as a barrier to manipulation

Strategyproof picking sequences

What can we do if we impose strategyproofness in picking sequences?

Non interleaving sequences

(Folk?) theorem

The only strategyproof picking sequences are **non-interleaving** sequences (e.g. A...AB...BC...C).

Non interleaving sequences

(Folk?) theorem

The only strategyproof picking sequences are **non-interleaving** sequences (e.g. *A*...*AB*...*BC*...*C*).

- A non-interleaving sequence is defined by a vector (k_1,\ldots,k_n) such that $\sum_{i=1}^n k_i = m$
- · Can we still ensure fairness in non-interleaving sequences?

Non interleaving sequences

(Folk?) theorem

The only strategyproof picking sequences are **non-interleaving** sequences (e.g. *A*...*AB*...*BC*...*C*).

- A non-interleaving sequence is defined by a vector (k_1,\ldots,k_n) such that $\sum_{i=1}^n k_i = m$
- Can we still ensure fairness in non-interleaving sequences?

Example

3 agents, 10 objects: we "feel" that: AABBBCCCCC is fairer than AAAAABBBCC

Non interleaving sequences

(Folk?) theorem

The only strategyproof picking sequences are **non-interleaving** sequences (e.g. *A*...*AB*...*BC*...*C*).

- A non-interleaving sequence is defined by a vector (k_1,\ldots,k_n) such that $\sum_{i=1}^n k_i = m$
- Can we still ensure fairness in non-interleaving sequences?

Example

3 agents, 10 objects: we "feel" that: AABBBCCCCC is fairer than AAAAABBBCC

 \rightarrow We can compensate late arrival by higher number of goods picked.

Finding the best sequence

- For regular (general) sequences, finding the fairest sequence was complex in most cases
- What about non-interleaving ones?

Finding the best sequence

- For regular (general) sequences, finding the fairest sequence was complex in most cases
- What about non-interleaving ones?

Main result

For $\Psi = FI - FC_{\lambda}$, for any $\lambda \in [0, 1]$, any scoring function, and any $F \in \{\min, +, \times\}$, we can find in **polynomial time** the vector (k_1, \ldots, k_n) that maximizes $ESW_F^{\Psi}(k)$.

Note: $FI - FC_{\lambda}$ is a mixture. The pref. profile is sampled according to FI with probability λ and FC with probability $1 - \lambda$.

- 30 / 50

Note (small digression)

You may have already heard of non-interleaving picking sequences, that have some similarities with **sequential/serial dictatorship**

Note (small digression)

You may have already heard of non-interleaving picking sequences, that have some similarities with **sequential/serial dictatorship**

- Serial dictatorship:
 - a fixed sequence of agents
 - the 1st one takes her best bundle
 - ${\ensuremath{\, \bullet }}$ then the 2nd one takes her best bundle among the remaining items
 - and so on...
- Sequential dictatorship: same, but the sequence depends on the preference profile [Pápai, 2001]
- Sequential quota choice function: same as non-interleaving picking sequences [Pápai, 2000]

Pápai, S. (2000).

original papers : Strategyproof multiple assignment using quotas. *Review of Economic Design*, 5(1):91–105.

Pápai, S. (2001).

Strategyproof and Nonbossy Multiple Assignments. Journal of Public Economic Theory, 3(3):257–271.

Picking Sequences for Resource Allocation

Computing the best ESW

Let us (try to) give some intuition...

Computing the best ESW

Let us (try to) give some intuition...

• Suppose Agent 1 is the picker

Computing the best ESW

Let us (try to) give some intuition...

- Suppose Agent 1 is the picker
- We must choose how many items k_1 she picks

Computing the best ESW

Let us (try to) give some intuition...

- Suppose Agent 1 is the picker
- We must choose how many items k_1 she picks
- If she picks k_1 items, she will receive a certain utility v_1 , and there will be $m k_1$ remaining items

Computing the best ESW

Let us (try to) give some intuition...

- Suppose Agent 1 is the picker
- We must choose how many items k_1 she picks
- If she picks k_1 items, she will receive a certain utility v_1 , and there will be $m k_1$ remaining items
- We must choose the value of k_1 that maximizes the aggregation (+, min, \times) of v_1 and the best ESW that we can obtain from the remaining (n-1) agents and $(m-k_1)$ items

→ 32 / 50

Computing the best ESW

Let us (try to) give some intuition...

- Suppose Agent 1 is the picker
- We must choose how many items k_1 she picks
- If she picks k_1 items, she will receive a certain utility v_1 , and there will be $m k_1$ remaining items
- We must choose the value of k_1 that maximizes the aggregation (+, min, \times) of v_1 and the best ESW that we can obtain from the remaining (n-1) agents and $(m-k_1)$ items

→ 32 / 50

Computing the best ESW

Let us (try to) give some intuition...

- Suppose Agent 1 is the picker
- We must choose how many items k_1 she picks
- If she picks k_1 items, she will receive a certain utility v_1 , and there will be $m k_1$ remaining items
- We must choose the value of k_1 that maximizes the aggregation (+, min, \times) of v_1 and the best ESW that we can obtain from the remaining (n-1) agents and $(m-k_1)$ items

Note: Here, v_1 only depends on k_1 and is easy to compute (the utility of the k_1 best objects)

→ 32 / 50

Computing the best ESW

• Now suppose Agent 2 is the picker

Picking Sequences for Resource Allocation 33 / 50

Computing the best ESW

- Now suppose Agent 2 is the picker
- We must choose how many items k_2 she picks

Computing the best ESW

- Now suppose Agent 2 is the picker
- We must choose how many items k_2 she picks
- Agent 1 has already picked k₁ items

Computing the best ESW

- Now suppose Agent 2 is the picker
- We must choose how many items k_2 she picks
- Agent 1 has already picked k_1 items
- If she picks k_2 items, she will receive a certain utility v_2 , and there will be $m-k_1-k_2$ remaining items

- Now suppose Agent 2 is the picker
- We must choose how many items k₂ she picks
- Agent 1 has already picked k₁ items
- If she picks k_2 items, she will receive a certain utility v_2 , and there will be $m k_1 k_2$ remaining items
- We must choose the value of k_2 that maximizes the aggregation (+, min, \times) of v_2 and the best ESW that we can obtain from the remaining (n-2) agents and $(m-k_1-k_2)$ items

- Now suppose Agent 2 is the picker
- We must choose how many items k₂ she picks
- Agent 1 has already picked k₁ items
- If she picks k_2 items, she will receive a certain utility v_2 , and there will be $m k_1 k_2$ remaining items
- We must choose the value of k_2 that maximizes the aggregation (+, min, \times) of v_2 and the best ESW that we can obtain from the remaining (n-2) agents and $(m-k_1-k_2)$ items

- Now suppose Agent 2 is the picker
- We must choose how many items k₂ she picks
- Agent 1 has already picked k_1 items
- If she picks k_2 items, she will receive a certain utility v_2 , and there will be $m k_1 k_2$ remaining items
- We must choose the value of k_2 that maximizes the aggregation (+, min, \times) of v_2 and the best ESW that we can obtain from the remaining (n-2) agents and $(m-k_1-k_2)$ items

Note: Here, v_2 depends on k_2 but not only...

Computation of *v*

Key property

If $\Psi = FI - FC_{\lambda}$, for any λ , for any agent *i*, v_i only depends on:

- # of items received by $i
 ightarrow k_i$
- # of items picked before o t

and can be computed in polynomial time $(O(m^3))$.

Computation of *v*

Key property

If $\Psi = FI - FC_{\lambda}$, for any λ , for any agent *i*, v_i only depends on:

- # of items received by $i
 ightarrow k_i$
- # of items picked before o t

and can be computed in polynomial time $(O(m^3))$.

• If
$$\Psi = FC$$
: $v(k, t) = \sum_{i=t+1}^{t+k} g(i)$

 If Ψ = Fl, v(k, t) can be computed by dynamic programming by carefully analyzing the probability that a given item has been picked before.

Some examples

Example of values of v(k, t) for $\Psi = FI$:

$k \setminus t$	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	7	6.86	6.67	6.4	6	5.33	4	-
2	13	12.57	12	11.2	10	8	-	-
3	18	17.14	16	14.4	12	-	-	-
4	22	20.57	18.67	16	-	-	-	-
5	25	22.86	20	-	-	-	-	-
6	27	24	-	-	-	-	-	-
7	28	-	-	-	-	-	-	-

Note: the approach is similar to [Kalinowski et al., 2013]

Kalinowski, T., Narodytska, N., and Walsh, T. (2013).

A social welfare optimal sequential allocation procedure.

In Proceedings of IJCAI 2013.

Computing the best ESW

Let us put things together and formalize...

Let us put things together and formalize...

Let $\widehat{ESW}_{F}^{\Psi}(i, \ell)$ =the best expected utility we can obtain for agents i, \ldots, n if ℓ items have already been picked.

Let us put things together and formalize...

Let $\widehat{ESW}_{F}^{\Psi}(i, \ell)$ =the best expected utility we can obtain for agents i, \ldots, n if ℓ items have already been picked.

$$\widehat{ESW}_{F}^{\Psi}(i,\ell) = \max_{k \in \{0,...,m-\ell\}} F\left(v(k,l), \widehat{ESW}_{F}^{\Psi}(i+1,l+k)\right)$$
(note: $F \in \{+,\min,\times\}$

Let us put things together and formalize...

Let $\widehat{ESW}_{F}^{\Psi}(i, \ell)$ =the best expected utility we can obtain for agents i, \ldots, n if ℓ items have already been picked.

$$\widehat{ESW}_{F}^{\Psi}(i,\ell) = \max_{k \in \{0,...,m-\ell\}} F\left(v(k,l), \widehat{ESW}_{F}^{\Psi}(i+1,l+k)\right)$$
(note: $F \in \{+,\min,\times\}$)

$$\widehat{ESW}_F^{\Psi}(n,\ell) = v(m-\ell,\ell)$$

Let us put things together and formalize...

Let $\widehat{ESW}_{F}^{\Psi}(i, \ell)$ =the best expected utility we can obtain for agents i, \ldots, n if ℓ items have already been picked.

$$\widehat{ESW}_{F}^{\Psi}(i,\ell) = \max_{k \in \{0,...,m-\ell\}} F\left(v(k,l), \widehat{ESW}_{F}^{\Psi}(i+1,l+k)\right)$$
(note: $F \in \{+,\min,\times\}$)

$$\widehat{ESW}_F^{\Psi}(n,\ell) = v(m-\ell,\ell)$$

Computable in polynomial time using dynamic programming ($O(nm^2)$ once the values v(k, t) have been computed).

Some results (egalitarianism)

Picking Sequences for Resource Allocation

Some results (Nash)

Picking Sequences for Resource Allocation

Some results (utilitarianism)

Do you see anything strange?

Computational barriers to manipulation

Can we rely on computational complexity to prevent manipulation?

Complexity as a barrier to manipulation

Let us go back to manipulable picking sequences (general ones)...

Complexity as a barrier to manipulation

Let us go back to manipulable picking sequences (general ones)... First problem:

A: "Can I get S for sure?"

Complexity as a barrier to manipulation

Let us go back to manipulable picking sequences (general ones)... First problem:

A: "Can I get S for sure?"

Getting a subset for sure

We can answer to that constructively in polynomial time!

Complexity as a barrier to manipulation

Let us go back to manipulable picking sequences (general ones)... First problem:

A: "Can I get S for sure?"

Getting a subset for sure

We can answer to that constructively in polynomial time!

Idea:

- two agents: pick the objects in ${\mathcal S}$ in the same order of $\succ_{{\mathcal B}}$
- more agents:
 - ullet transform agents 2 to m-1 into a single (fake) agent
 - apply the algorithm for 2 agents

General manipulation problem

A: "What is the best subset I can get?"

General manipulation problem

A: "What is the best subset I can get?"

Idea: Greedily build the optimal achievable subset:

- Find the best object *i* such that {*i*} is achievable;
- Find the best object j such that $\{i, j\}$ is achievable;

• . . .

General manipulation problem

A: "What is the best subset I can get?"

Idea: Greedily build the optimal achievable subset:

- Find the best object *i* such that {*i*} is achievable;
- Find the best object *j* such that {*i*, *j*} is achievable;

• ...

Manipulation with additive preferences, two agents

If the manipulator has additive preferences, the optimal manipulation can be computed in polynomial time.

General manipulation problem

A: "What is the best subset I can get?"

Idea: Greedily build the optimal achievable subset:

- Find the best object *i* such that {*i*} is achievable;
- Find the best object *j* such that {*i*, *j*} is achievable;

• . . .

Manipulation with additive preferences, two agents

If the manipulator has additive preferences, the optimal manipulation can be computed in polynomial time.

Only works for two agents!

General manipulation problem

Result [Aziz et al., 2017]

If the manipulator has additive preferences, the optimal manipulation problem is $\ensuremath{\text{NP}}\xspace$ -complete.

(reduction from [3-SAT])

- Is there a manipulation that yields a better utility than the truthful report? \rightsquigarrow NP-complete
- Not true anymore for binary utilities and (ordinal) responsive set extension.

Aziz, H., Bouveret, S., Lang, J., and Mackenzie, S. (2017).
Complexity of manipulating sequential allocation.
In Proceedings of the 31st AAAI conference on Artificial Intelligence (AAAI'17).

Coalitional Manipulation

Example

3 agents, 6 objects:

- A: $1 \succ 2 \succ 5 \succ 4 \succ 3 \succ 6$
- $B: 1 \succ 3 \succ 5 \succ 2 \succ 4 \succ 6$
- C: $2 \succ 3 \succ 4 \succ 1 \succ 5 \succ 6$

Sequence $\pi = ABCABC \rightarrow \{15|34|26\}.$

Coalitional Manipulation

Example

3 agents, 6 objects:

- A: $1 \succ 2 \succ 5 \succ 4 \succ 3 \succ 6$
- $B: 1 \succ 3 \succ 5 \succ 2 \succ 4 \succ 6$
- C: $2 \succ 3 \succ 4 \succ 1 \succ 5 \succ 6$

Sequence $\pi = ABCABC \rightarrow \{15|34|26\}.$

- If A and B manipulate alone, they cannot do better
- If they cooperate, they can get $\{12|35|46\},$ which is strictly better.

Coalitional Manipulation: Results

Three kinds of manipulation considered here:

- No post-allocation trade allowed between the manipulators
- Post-allocation exchange of goods allowed between the manipulators
- Post-allocation exchange of goods + side-payments allowed

Coalitional Manipulation: Results

Three kinds of manipulation considered here:

- No post-allocation trade allowed between the manipulators
- Post-allocation exchange of goods allowed between the manipulators
- Post-allocation exchange of goods + side-payments allowed

Results:

- No post-allocation trade allowed between the manipulators \rightarrow NP-complete [Partition]
- Post-allocation exchange of goods allowed between the manipulators \rightarrow NP-complete [Partition]
- Post-allocation exchange of goods + side-payments allowed \rightarrow polynomial (comes down to manipulation by a single agent)

Everyone manipulates...

One manipulator

Everyone manipulates...

One manipulator \rightarrow several manipulators (coalitional manipulation)

Everyone manipulates...

One manipulator \rightarrow several manipulators (coalitional manipulation) \rightarrow everyone (rational, self-interested) manipulates?

Everyone manipulates...

One manipulator \rightarrow several manipulators (coalitional manipulation) \rightarrow everyone (rational, self-interested) manipulates?

Game Theory (Subgame Perfect Nash Equilibrium)

Everyone manipulates...

One manipulator \rightarrow several manipulators (coalitional manipulation) \rightarrow everyone (rational, self-interested) manipulates?

Game Theory (Subgame Perfect Nash Equilibrium)

- Two agents and additive utilities, precise characterization of the result of every SPNE ((*rev*(≻₂), *rev*(≻₁), *rev*(π)))
 [Kalinowski et al., 2013, Kohler and Chandrasekaran, 1971].
- Unbounded number of agents: **PSPACE**-hard [Kalinowski et al., 2013].

Conclusion

A take-away message?

Conclusion

Conclusion

- A simple and intuitive sequential allocation procedure (actually already known in sparse litterature)
- Finding the best policy?
 - Full Correlation case well understood
 - Full Independence: partial (hardness) results
- Strategical issues:
 - Non-interleaved sequences: strategyproof, and can be fair!
 - Complexity as a barrier to (individual and coalitional) manipulation

Conclusion

A note about efficiency

As soon as we constrain serial dictatorship, we lose Pareto-efficiency.

▲

A note about efficiency

As soon as we constrain serial dictatorship, we lose Pareto-efficiency. But:

- Any Pareto-efficient allocation is sequenceable
- The converse is true for
 - quantity-monotonic preferences [Pápai, 2000]
 - lexicographic preferences [Hosseini and Larson, 2019]
- Sequenceable allocations correspond to a weak form of Pareto-optimal ones
- \rightarrow Sequenceability \approx weak (local) form of efficiency

Hosseini, H. and Larson, K. (2019).

Multiple assignment problems under lexicographic preferences.

In Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS '19, pages 837–845.

Pápai, S. (2000).

original papers : Strategyproof multiple assignment using quotas. Review of Economic Design, 5(1):91–105.

Very nice properties...

A simple protocol, but with nice features:

- "locally" efficient
- efficient with respect to cycle deals
- guarantees envy-freeness up to one good
- gives good approximation of social welfare
- also gives good approximation of other fairness properties (*e.g.* max-min share)